推荐搜索:
Ace2
Mettl14
Pink1
C-NKG
Rag1
VEGFA
Trp53
C57BL/6JCya-Acsl4em1/Cya 基因敲除小鼠
产品名称:
Acsl4-KO
产品编号:
S-KO-10226
品系背景:
C57BL/6JCya
小鼠资源库
* 使用本品系发表的文献需注明:Acsl4-KO mice (Strain S-KO-10226) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Acsl4em1/Cya
品系编号
KOCMP-50790-Acsl4-B6J-VA
产品编号
S-KO-10226
基因名
Acsl4
品系背景
C57BL/6JCya
基因别称
9430020A05Rik; ACS4; Facl4; Lacs4
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:1354713 Female heterozygotes for a targeted null mutation exhibit accumulation of prostaglandins in the uterus, reduced fertility with few and small litters, and very low transmission of the mutant allele.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
全球范围
品系详情
Acsl4位于小鼠的X号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得Acsl4基因敲除小鼠,性成熟后取精子冻存。
Acsl4-KO小鼠模型由赛业生物(Cyagen)利用基因编辑技术构建。该模型中Acsl4基因由16个外显子组成,其中ATG起始密码子在3号外显子,TAA终止密码子在十六号外显子。敲除区域位于5号外显子,包含110个碱基对的编码序列。对于携带敲除等位基因的小鼠,由于Acsl4基因的缺失,导致子宫中前列腺素的积累,降低了生育能力,产下的幼崽数量少且体型小,且突变等位基因的传递率非常低。因此,赛业生物(Cyagen)推荐生成一个条件性敲除模型。该模型可用于研究Acsl4基因在小鼠体内的功能。
基因研究概述
ACSL4,即长链酰基辅酶A合成酶家族成员4,是一种在脂质代谢中发挥关键作用的酶。它催化长链脂肪酸与辅酶A的结合,生成酰基辅酶A,这一过程是脂肪酸代谢和氧化的重要步骤。ACSL4在多种生物学过程中发挥作用,包括细胞增殖、凋亡和脂质合成。
ACSL4在多种疾病中发挥重要作用,包括急性肾损伤(AKI)、缺血性脑卒中、非酒精性脂肪性肝病(NAFLD)、高血压相关慢性肾病(CKD)和结直肠癌。研究表明,ACSL4在AKI中表达上调,并且与铁死亡相关。ACSL4的缺失可以显著减少铁死亡和抑制AKI小鼠的功能和病理损伤[1]。此外,ACSL4在缺血性脑卒中中表达上调,并且与神经元死亡相关。抑制ACSL4可以减轻缺血性脑卒中的神经元损伤[2]。ACSL4在NAFLD中表达上调,并且与脂质积累相关。抑制ACSL4可以减轻NAFLD的症状[5]。ACSL4在CKD中表达上调,并且与炎症和纤维化相关。抑制ACSL4可以减轻CKD的症状[6]。ACSL4在结直肠癌中表达上调,并且与肿瘤细胞增殖和转移相关。抑制ACSL4可以抑制结直肠癌的生长和转移[7]。
ACSL4的活性受到多种因素的调控。例如,PKCβII可以通过磷酸化ACSL4来激活ACSL4,从而促进铁死亡[3]。c-Myc可以上调ACSL4的表达,从而促进脂质合成[4]。CDK1可以下调ACSL4的表达,从而抑制铁死亡[7]。
综上所述,ACSL4是一种在脂质代谢中发挥关键作用的酶,参与多种生物学过程。ACSL4在多种疾病中发挥重要作用,包括急性肾损伤、缺血性脑卒中、非酒精性脂肪性肝病、高血压相关慢性肾病和结直肠癌。ACSL4的活性受到多种因素的调控。ACSL4的研究有助于深入理解脂质代谢的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Wang, Yue, Zhang, Menghan, Bi, Ran, Cao, Qiuhua, Gao, Xinghua. 2022. ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. In Redox biology, 51, 102262. doi:10.1016/j.redox.2022.102262. https://pubmed.ncbi.nlm.nih.gov/35180475/
2. Tuo, Qing-Zhang, Liu, Yu, Xiang, Zheng, Dong, Biao, Lei, Peng. 2022. Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. In Signal transduction and targeted therapy, 7, 59. doi:10.1038/s41392-022-00917-z. https://pubmed.ncbi.nlm.nih.gov/35197442/
3. Zhang, Hai-Liang, Hu, Bing-Xin, Li, Zhi-Ling, Deng, Rong, Zhu, Xiao-Feng. 2022. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. In Nature cell biology, 24, 88-98. doi:10.1038/s41556-021-00818-3. https://pubmed.ncbi.nlm.nih.gov/35027735/
4. Chen, Junru, Ding, Chaofeng, Chen, Yunhao, Wu, Jian, Zheng, Shusen. 2020. ACSL4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway. In Cancer letters, 502, 154-165. doi:10.1016/j.canlet.2020.12.019. https://pubmed.ncbi.nlm.nih.gov/33340617/
5. Duan, Jingjing, Wang, Zhuo, Duan, Ran, Chen, Zhen, Yang, Yong. 2021. Therapeutic targeting of hepatic ACSL4 ameliorates NASH in mice. In Hepatology (Baltimore, Md.), 75, 140-153. doi:10.1002/hep.32148. https://pubmed.ncbi.nlm.nih.gov/34510514/
6. Gao, Li, Zhang, Junsheng, Yang, Tingting, Meng, Xiao-Ming, Wu, Yonggui. 2023. STING/ACSL4 axis-dependent ferroptosis and inflammation promote hypertension-associated chronic kidney disease. In Molecular therapy : the journal of the American Society of Gene Therapy, 31, 3084-3103. doi:10.1016/j.ymthe.2023.07.026. https://pubmed.ncbi.nlm.nih.gov/37533255/
7. Zeng, Kaixuan, Li, Weihao, Wang, Yue, Xing, Yue, Zhou, Chi. 2023. Inhibition of CDK1 Overcomes Oxaliplatin Resistance by Regulating ACSL4-mediated Ferroptosis in Colorectal Cancer. In Advanced science (Weinheim, Baden-Wurttemberg, Germany), 10, e2301088. doi:10.1002/advs.202301088. https://pubmed.ncbi.nlm.nih.gov/37428466/