推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1

B6-hRHO (Promoter)/hRHO*P23H (Promoter)小鼠

复苏/繁育服务
产品名称

B6-hRHO (Promoter)/hRHO*P23H (Promoter)

产品编号

C001839

品系全称

C57BL/6JCya-Rhotm3(hRHO)/Rhotm4(hRHO*P23H)/Cya

品系背景

C57BL/6JCya

使用本品系发表的文献需注明: B6-hRHO (Promoter)/hRHO*P23H (Promoter) mice (Catalog C001839) were purchased from Cyagen.
产品类型
周龄
性别
基因型
数量
小计:
询价
HUGO-GT人源化动物模型
疾病动物模型
小核酸

基本信息

应用领域

验证数据

基因
基因别称
RP4,OPN2,CSNBAD1
NCBI ID
染色体号
Chr 3
MGI ID

品系介绍

视网膜色素变性(Retinitis Pigmentosa, RP)是一种遗传性视网膜疾病,全球患病率约为1:5000-1:3000。RP具有很大的临床和遗传异质性,视紫红质基因(Rhodopsin, RHO)突变导致约25%的显性RP [1]。RHO编码的视紫红蛋白与视觉光传导和GPCR下游信号密切相关,视紫红蛋白在视觉形成过程中光信号的传导至关重要,大多数RHO突变导致视紫红蛋白在感光细胞中高水平表达,使得大量的突变蛋白在细胞中定位异常并聚集,造成感光细胞凋亡,不能行使正常的光信号传导功能。此外,RHO基因的突变也与先天性静止性夜盲(CSNB)有关 [2-6]。RHO基因突变可导致RHO介导的常染色体显性视网膜色素变性(RHO-adRP),在25%的常染色体显性遗传RP(adRP)病例中,有超过150种不同的RHO基因突变体。其中,P23H突变是常染色体显性遗传性视网膜色素变性的最常见原因之一,占adRP病例的10% [2]。之前的研究显示,携带该突变的杂合小鼠表现为与患者的疾病进展相似的视网膜病变和进行性视网膜变性 [3],可用于视觉信号传导和视网膜色素变性(RP)的研究。目前靶向RHO基因以治疗视网膜色素变性的基因疗法有ASO、CRISPR等,全人源化动物模型的应用有助于推动RHO相关潜在疗法向临床试验进一步转化 [7-11]
B6-hRHO (Promoter) /hRHO*P23H (Promoter) 小鼠是通过将纯合B6-hRHO (Promoter) 小鼠(产品编号:C001646)和纯合B6-hRHO*P23H (Promoter) 小鼠(产品编号:C001727)交配获得的F1代人源化模型。该模型携带两种人源RHO基因等位基因,且均为启动子区人源化。其中,一条等位基因为野生型人源RHO(无突变),另一条等位基因为携带致病点突变(P23H)的人源RHO(hRHO*P23H)。人源基因编码的异常蛋白在小鼠体内表达,因此该模型的视网膜外形和功能存在异常和视觉缺陷。此外,基于自主研发的TurboKnockout融合BAC重组的技术创新,赛业生物还可基于B6-hRHO全基因组人源化小鼠针对不同点突变提供定制服务,以满足广大研发人员关于视网膜色素变性(RP)疾病的药效学等实验需求。
参考文献
Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet. 2006 Nov 18;368(9549):1795-809.
Meng D, Ragi SD, Tsang SH. Therapy in Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa. Mol Ther. 2020 Oct 7;28(10):2139-2149.
Sakami S, Maeda T, Bereta G, Okano K, Golczak M, Sumaroka A, Roman AJ, Cideciyan AV, Jacobson SG, Palczewski K. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem. 2011 Mar 25;286(12):10551-67.
Dryja T P, Mcgee T L, Reichel E, et al. A point mutation of the rhodopsin gene in one form of retinitispigmentosa[J]. Nature, 1990, 343(6256):364-366.
Zhang X, Fu W, Pang C P, et al. Screening for point mutations in rhodopsin gene among one hundred Chinese patients with retinitis pigmentosa[J]. Chinese Journal of Medical Genetics, 2002, 19(6):463-466.
Gamundi M J, Hernan I, Muntanyola M, et al. Transcriptional expression of cis-acting and trans-acting splicing mutations cause autosomal dominant retinitis pigmentosa[J]. Human Mutation, 2008.
Biasutto P, Adamson P S, Dulla K, et al. Allele specific knock-down of human P23H rhodopsin mRNA and prevention of retinal degeneration in humanized P23H rhodopsin knock-in mouse, following treatment with an intravitreal GAPmer antisense oligonucleotide (QR-1123)[J]. Investigative ophthalmology & visual science, 2019(9):60.
Patrizi C, Llado M, Benati D, et al. Allele-specific editing ameliorates dominant retinitis pigmentosa in a transgenic mouse model[J]. The American Journal of Human Genetics, 2021, 108(2).
Li P, Kleinstiver B P, Leon M Y, et al. Allele-Specific CRISPR-Cas9 Genome Editing of the Single-Base P23H Mutation for Rhodopsin-Associated Dominant Retinitis Pigmentosa[J]. Crispr Journal, 2018, 1(1):55-64.
Xla B, Rja B, Xiang M, et al. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter. 2021.
Wen-Hsuan Wu, Yi-Ting Tsai, Wen Huang et al. CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa. 2022.

构建方案

图1. B6-hRHO (Promoter)小鼠基因编辑策略。 利用胚胎干细胞(ES)基因编辑打靶技术,将小鼠Rho基因1号外显子上游至5号外显子下游的序列替换为人源RHO基因1号外显子上游至5号外显子下游的序列。
图2. B6-hRHO*P23H (Promoter) 小鼠基因编辑策略。 将小鼠Rho基因1号外显子上游至5号外显子下游的序列替换为人源RHO基因1号外显子上游至5号外显子下游的序列,并将点突变p.P23H (CCC to CAC) 引入至人源RHO基因的1号外显子中。