推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6NCya-Nfe2l2em1/Cya 基因敲除小鼠
复苏/繁育服务
产品名称:
Nfe2l2-KO
产品编号:
S-KO-16212
品系背景:
C57BL/6NCya
小鼠资源库
* 使用本品系发表的文献需注明:Nfe2l2-KO mice (Strain S-KO-16212) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6NCya-Nfe2l2em1/Cya
品系编号
KOCMP-18024-Nfe2l2-B6N-VC
产品编号
S-KO-16212
基因名
Nfe2l2
品系背景
C57BL/6NCya
基因别称
Nrf2
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:108420 Nullizygous mice show increased sensitivity to oxidative stress in a variety of organs and cells, abnormal tooth enamel, altered response to various injuries, chemical treatments and induced inflammatory diseases, and an age-related decline in spermatogenesis and ovarian follicle numbers.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
Nfe2l2位于小鼠的2号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得Nfe2l2基因敲除小鼠,性成熟后取精子冻存。
Nfe2l2-KO小鼠模型是由赛业生物(Cyagen)采用基因编辑技术构建的全基因组敲除小鼠。Nfe2l2基因位于小鼠2号染色体上,由5个外显子组成,其中ATG起始密码子在1号外显子,TAG终止密码子在5号外显子。全身性基因敲除区域(KO区域)位于4至5号外显子,包含1392个碱基对的编码序列。敲除该区域会导致小鼠Nfe2l2基因功能的丧失。Nfe2l2-KO小鼠模型的构建过程包括将核糖核蛋白(RNP)和靶向载体共同注入受精卵。随后,对出生的小鼠进行PCR和测序分析进行基因型鉴定。携带敲除等位基因的小鼠表现出对氧化应激的敏感性增加,在多种器官和细胞中异常,牙齿釉质异常,对各种伤害、化学处理和诱导的炎症疾病的反应改变,以及与年龄相关的精子生成和卵巢卵泡数量下降。该模型可用于研究Nfe2l2基因在小鼠体内的功能,以及与氧化应激、牙齿发育、炎症反应和生殖功能相关的生物学过程。
基因研究概述
Nfe2l2,也称为Nrf2(nuclear factor, erythroid derived 2, like 2),是一种重要的转录因子,参与调节细胞内抗氧化基因的表达,以响应氧化应激等压力条件。Nfe2l2在维持细胞内氧化还原稳态和蛋白质稳态方面发挥着关键作用。Nfe2l2通过与特定的DNA序列结合,激活或抑制下游基因的表达,从而调节细胞的生物学过程。例如,研究发现Nfe2l2可以与LAMP2基因的特定序列结合,影响LAMP2A蛋白的表达水平,进而调节伴侣介导的自噬(CMA)活性[1]。此外,Nfe2l2还与肿瘤的发生发展密切相关。研究发现,Nfe2l2的基因多态性与结核病的易感性相关[2]。Nfe2l2的突变与食管鳞状细胞癌的不良预后相关[3,4,5]。Nfe2l2的激活可以促进肿瘤的发生发展,而Nfe2l2的抑制可以抑制肿瘤的生长[6]。此外,Nfe2l2还与线粒体和核之间的通讯有关。研究发现,线粒体编码的MOTS-c肽可以转移到细胞核,并与Nfe2l2等转录因子相互作用,调节核基因的表达[7]。总之,Nfe2l2是一种重要的转录因子,在维持细胞内氧化还原稳态和蛋白质稳态、肿瘤的发生发展以及线粒体和核之间的通讯等方面发挥着重要作用。深入研究Nfe2l2的生物学功能和调控机制,有助于揭示相关疾病的发病机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Pajares, Marta, Rojo, Ana I, Arias, Esperanza, Cuervo, Ana María, Cuadrado, Antonio. 2018. Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. In Autophagy, 14, 1310-1322. doi:10.1080/15548627.2018.1474992. https://pubmed.ncbi.nlm.nih.gov/29950142/
2. Ji, Guiyi, Zhang, Miaomiao, Liu, Qianqian, Sandford, Andrew J, He, Jian-Qing. 2021. Functional Polymorphism in the NFE2L2 Gene Associated With Tuberculosis Susceptibility. In Frontiers in immunology, 12, 660384. doi:10.3389/fimmu.2021.660384. https://pubmed.ncbi.nlm.nih.gov/34108963/
3. Kim, Kyung Hwa, Son, Jyung Mean, Benayoun, Bérénice A, Lee, Changhan. 2018. The Mitochondrial-Encoded Peptide MOTS-c Translocates to the Nucleus to Regulate Nuclear Gene Expression in Response to Metabolic Stress. In Cell metabolism, 28, 516-524.e7. doi:10.1016/j.cmet.2018.06.008. https://pubmed.ncbi.nlm.nih.gov/29983246/
4. . 2012. Comprehensive genomic characterization of squamous cell lung cancers. In Nature, 489, 519-25. doi:10.1038/nature11404. https://pubmed.ncbi.nlm.nih.gov/22960745/
5. Fang, Yuan, Bansal, Kushagra, Mostafavi, Sara, Benoist, Christophe, Mathis, Diane. 2024. AIRE relies on Z-DNA to flag gene targets for thymic T cell tolerization. In Nature, 628, 400-407. doi:10.1038/s41586-024-07169-7. https://pubmed.ncbi.nlm.nih.gov/38480882/
6. Ge, Mian, Yao, Weifeng, Yuan, Dongdong, Xia, Zhengyuan, Hei, Ziqing. 2017. Brg1-mediated Nrf2/HO-1 pathway activation alleviates hepatic ischemia-reperfusion injury. In Cell death & disease, 8, e2841. doi:10.1038/cddis.2017.236. https://pubmed.ncbi.nlm.nih.gov/28569786/
7. Cui, Yongping, Chen, Hongyan, Xi, Ruibin, Li, Yanhong, Liu, Zhihua. 2020. Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. In Cell research, 30, 902-913. doi:10.1038/s41422-020-0333-6. https://pubmed.ncbi.nlm.nih.gov/32398863/
aav