Acox3,也称为酰基辅酶A氧化酶3,是一种重要的过氧化物酶体酶,参与脂肪酸的β-氧化过程。脂肪酸β-氧化是脂肪酸代谢的主要途径之一,对于维持细胞能量平衡和脂质代谢稳态至关重要。Acox3在多种生物学过程中发挥作用,包括能量代谢、脂质代谢、细胞分化、发育和疾病发生。
在能量代谢方面,Acox3通过催化长链脂肪酸的β-氧化,产生能量和乙酰辅酶A,为细胞提供能量。在脂质代谢方面,Acox3参与脂肪酸的分解和合成,维持细胞内脂质平衡。在细胞分化方面,Acox3的活性与细胞分化过程密切相关,影响细胞的命运决定和发育。在疾病发生方面,Acox3的异常表达与多种疾病的发生和发展相关,包括糖尿病心肌病、缺血性卒中、骨质疏松症、动脉粥样硬化、结直肠癌和宫颈癌等。
在糖尿病心肌病中,Acox3的表达水平显著降低,导致脂肪酸代谢紊乱和心肌细胞功能障碍[5]。在缺血性卒中中,Acox3的异常表达与血管痉挛和动脉粥样硬化斑块的形成相关[2]。在骨质疏松症中,Acox3的活性降低导致脂肪酸代谢紊乱和骨细胞功能障碍[4]。在动脉粥样硬化中,Acox3的异常表达与巨噬细胞的炎症反应和动脉粥样硬化斑块的形成相关[1]。在结直肠癌中,Acox3的表达水平降低导致脂肪酸代谢紊乱和肿瘤的转移[3]。在宫颈癌中,Acox3的表达水平降低与宫颈癌的发生和发展相关[6]。
综上所述,Acox3是一种重要的过氧化物酶体酶,参与脂肪酸的β-氧化过程,在能量代谢、脂质代谢、细胞分化、发育和疾病发生中发挥重要作用。Acox3的异常表达与多种疾病的发生和发展相关,包括糖尿病心肌病、缺血性卒中、骨质疏松症、动脉粥样硬化、结直肠癌和宫颈癌等。深入研究Acox3的生物学功能和疾病发生机制,有助于为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Costantino, Sarah, Mengozzi, Alessandro, Velagapudi, Srividya, Luscher, Thomas Felix, Paneni, Francesco. 2023. Treatment with recombinant Sirt1 rewires the cardiac lipidome and rescues diabetes-related metabolic cardiomyopathy. In Cardiovascular diabetology, 22, 312. doi:10.1186/s12933-023-02057-2. https://pubmed.ncbi.nlm.nih.gov/37957697/
2. Kim, Joon-Tae, Won, So Yeon, Kang, KyungWook, Choi, Seok-Yong, Kim, Myeong-Kyu. 2020. ACOX3 Dysfunction as a Potential Cause of Recurrent Spontaneous Vasospasm of Internal Carotid Artery. In Translational stroke research, 11, 1041-1051. doi:10.1007/s12975-020-00779-z. https://pubmed.ncbi.nlm.nih.gov/31975215/
3. Chu, Wenxiang, Peng, Weilin, Lu, Yingying, Han, Chaofeng, Lu, Xuhua. 2024. PRMT6 Epigenetically Drives Metabolic Switch from Fatty Acid Oxidation toward Glycolysis and Promotes Osteoclast Differentiation During Osteoporosis. In Advanced science (Weinheim, Baden-Wurttemberg, Germany), 11, e2403177. doi:10.1002/advs.202403177. https://pubmed.ncbi.nlm.nih.gov/39120025/
4. Zhang, Xuejing, Wang, Tai, Zhai, Dongdong, Xiong, Fei, Wang, Ying. 2023. Transcriptome analysis and gene expression analysis related to salinity-alkalinity and low temperature adaptation of Triplophysa yarkandensis. In Frontiers in genetics, 13, 1089274. doi:10.3389/fgene.2022.1089274. https://pubmed.ncbi.nlm.nih.gov/36712878/
5. Zhang, Haitao, Shen, Yan, Kim, Il-Man, Weintraub, Neal L, Tang, Yaoliang. 2021. The Impaired Bioenergetics of Diabetic Cardiac Microvascular Endothelial Cells. In Frontiers in endocrinology, 12, 642857. doi:10.3389/fendo.2021.642857. https://pubmed.ncbi.nlm.nih.gov/34054724/
6. Lin, Hongmei, Ma, Yifei, Wei, Yongqing, Shang, Hui. 2016. Genome-wide analysis of aberrant gene expression and methylation profiles reveals susceptibility genes and underlying mechanism of cervical cancer. In European journal of obstetrics, gynecology, and reproductive biology, 207, 147-152. doi:10.1016/j.ejogrb.2016.10.017. https://pubmed.ncbi.nlm.nih.gov/27863272/