Slc25a32,也称为线粒体叶酸转运蛋白(MFT),是一种重要的线粒体转运蛋白,属于SLC25家族。SLC25家族共有53个转运蛋白,主要负责将营养物质和辅助因子跨膜转运到线粒体中,参与线粒体的代谢和功能。Slc25a32的主要功能是转运四氢叶酸(THF)和黄素腺嘌呤二核苷酸(FAD)进入线粒体,参与线粒体的一碳代谢和氧化还原平衡的调节。
Slc25a32的异常表达与多种疾病的发生发展密切相关。例如,Slc25a32的突变会导致晚发性运动不耐受,与多种神经系统和代谢性疾病相关。此外,Slc25a32的异常表达还与癌症的发生、发展和预后相关。
在乳腺癌中,Slc25a32的异常表达与免疫浸润细胞、肿瘤干细胞和免疫相关标记物的表达相关,并且Slc25a32的敲低可以抑制乳腺癌细胞的增殖、侵袭和转移[1]。在胶质母细胞瘤中,Slc25a32的高表达与肿瘤的高分级和较差的预后相关,敲低Slc25a32可以抑制肿瘤细胞的增殖和侵袭,而过表达Slc25a32可以促进肿瘤细胞生长和侵袭,这些效应主要是通过激活PI3K-AKT-mTOR信号通路实现的[3]。
此外,Slc25a32的异常表达还与其他疾病相关。例如,Slc25a32的基因多态性与日本绝经后女性的血浆叶酸水平和骨折风险相关[2]。Slc25a32的基因敲除会导致小鼠出现神经管缺陷,而补充甲酸可以预防这种缺陷[4]。Slc25a32的异常表达还与卵巢癌的耐药性和治疗相关[5]。此外,Slc25a32的异常表达还与线粒体复合物I的稳定性和组装相关[6]。
综上所述,Slc25a32是一种重要的线粒体转运蛋白,参与线粒体的一碳代谢和氧化还原平衡的调节,与多种疾病的发生、发展和预后相关。对Slc25a32的深入研究有助于理解线粒体代谢和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Zuo, Shiqi, He, Siyuan, Zhu, Zhiqin, Wu, Ziqing, Tang, Yao. 2024. Mitochondria-Associated Gene SLC25A32 as a Novel Prognostic and Immunotherapy Biomarker: From Pan-Cancer Multiomics Analysis to Breast Cancer Validation. In Analytical cellular pathology (Amsterdam), 2024, 1373659. doi:10.1155/2024/1373659. https://pubmed.ncbi.nlm.nih.gov/39624160/
2. Urano, Tomohiko, Shiraki, Masataka, Saito, Mitsuru, Ouchi, Yasuyoshi, Inoue, Satoshi. 2013. Polymorphism of SLC25A32, the folate transporter gene, is associated with plasma folate levels and bone fractures in Japanese postmenopausal women. In Geriatrics & gerontology international, 14, 942-6. doi:10.1111/ggi.12201. https://pubmed.ncbi.nlm.nih.gov/24354357/
3. Xue, Zhiwei, Wang, Jiwei, Wang, Zide, Huang, Bin, Wang, Xinyu. 2023. SLC25A32 promotes malignant progression of glioblastoma by activating PI3K-AKT signaling pathway. In BMC cancer, 23, 589. doi:10.1186/s12885-023-11097-6. https://pubmed.ncbi.nlm.nih.gov/37365560/
4. Kim, Jimi, Lei, Yunping, Guo, Jin, Wang, Hong-Yan, Finnell, Richard H. 2018. Formate rescues neural tube defects caused by mutations in Slc25a32. In Proceedings of the National Academy of Sciences of the United States of America, 115, 4690-4695. doi:10.1073/pnas.1800138115. https://pubmed.ncbi.nlm.nih.gov/29666258/
5. Wallace-Povirk, Adrianne, O'Connor, Carrie, Dekhne, Aamod S, Hou, Zhanjun, Matherly, Larry H. . Mitochondrial and Cytosolic One-Carbon Metabolism Is a Targetable Metabolic Vulnerability in Cisplatin-Resistant Ovarian Cancer. In Molecular cancer therapeutics, 23, 809-822. doi:10.1158/1535-7163.MCT-23-0550. https://pubmed.ncbi.nlm.nih.gov/38377173/
6. Curtabbi, Andrea, Guarás, Adela, Cabrera-Alarcón, José Luis, Medina, Milagros, Enríquez, José Antonio. 2023. Regulation of respiratory complex I assembly by FMN cofactor targeting. In Redox biology, 69, 103001. doi:10.1016/j.redox.2023.103001. https://pubmed.ncbi.nlm.nih.gov/38145589/