基因Rabgef1,也称为Rabex-5,是一种重要的蛋白质,属于Rab GTPases家族的上游因子。Rab GTPases是一类小的GTP结合蛋白,它们在真核细胞的内吞途径中发挥关键作用,参与调控细胞内运输、信号转导、蛋白质循环和降解等关键过程[1,3]。Rabgef1通过与Rab蛋白相互作用,调节它们的活性,从而影响细胞内的运输过程[2,8]。
Rabgef1在多种生物学过程中发挥重要作用。研究表明,Rabgef1在视网膜光感受器的分化和稳态维持中具有关键作用。在小鼠中,Rabgef1的缺失导致光感受器形态异常,并伴随视网膜退行性变[3]。此外,Rabgef1还参与维持皮肤稳态,其缺失会导致表皮屏障功能受损,并诱导皮肤炎症反应[4]。此外,Rabgef1还参与调节神经元的发育和信号传导。研究表明,Rabgef1在神经生长因子(NGF)诱导的PC12细胞神经突生长和NMDA受体介导的信号传导中发挥重要作用[5,8]。Rabgef1还与某些人类癌症的发生发展相关。研究发现,Rabgef1在人胶质瘤组织中显著上调,并且其下调可以抑制胶质瘤细胞的增殖和转移,并诱导细胞凋亡和自噬[2]。此外,Rabgef1的表达还与糖尿病足溃疡的发生发展相关。研究发现,Rabgef1在糖尿病足溃疡组织中显著上调,并且其下调可以改善糖尿病足溃疡的预后[7]。Rabgef1的表达还与非梗阻性无精子症的发生发展相关。研究发现,Rabgef1在非梗阻性无精子症患者睾丸组织中显著上调,并且其下调可以改善精子发生和成熟过程[6]。
综上所述,基因Rabgef1在多种生物学过程中发挥重要作用,包括视网膜光感受器的分化和稳态维持、皮肤稳态的维持、神经元的发育和信号传导、以及某些人类癌症的发生发展。Rabgef1的研究有助于深入理解内吞途径的调控机制,为相关疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Yamano, Koji, Wang, Chunxin, Sarraf, Shireen A, Matsuda, Noriyuki, Youle, Richard J. 2018. Endosomal Rab cycles regulate Parkin-mediated mitophagy. In eLife, 7, . doi:10.7554/eLife.31326. https://pubmed.ncbi.nlm.nih.gov/29360040/
2. Fan, Haitao, Xin, Tao, Dong, Xushuai, Guo, Hua, Pang, Qi. 2020. RabGEF1 functions as an oncogene in U251 glioblastoma cells and is involved in regulating AKT and Erk pathways. In Experimental and molecular pathology, 118, 104571. doi:10.1016/j.yexmp.2020.104571. https://pubmed.ncbi.nlm.nih.gov/33166495/
3. Hargrove-Grimes, Passley, Mondal, Anupam K, Gumerson, Jessica, Li, Tiansen, Swaroop, Anand. 2020. Loss of endocytosis-associated RabGEF1 causes aberrant morphogenesis and altered autophagy in photoreceptors leading to retinal degeneration. In PLoS genetics, 16, e1009259. doi:10.1371/journal.pgen.1009259. https://pubmed.ncbi.nlm.nih.gov/33362196/
4. Marichal, Thomas, Gaudenzio, Nicolas, El Abbas, Sophie, Tsai, Mindy, Galli, Stephen J. 2016. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. In The Journal of clinical investigation, 126, 4497-4515. doi:10.1172/JCI86359. https://pubmed.ncbi.nlm.nih.gov/27820702/
5. Tam, See-Ying, Lilla, Jennifer N, Chen, Ching-Cheng, Kalesnikoff, Janet, Tsai, Mindy. 2015. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells. In PloS one, 10, e0142935. doi:10.1371/journal.pone.0142935. https://pubmed.ncbi.nlm.nih.gov/26588713/
6. Hashemi Karoii, Danial, Azizi, Hossein, Skutella, Thomas. 2023. Altered G-Protein Transduction Protein Gene Expression in the Testis of Infertile Patients with Nonobstructive Azoospermia. In DNA and cell biology, 42, 617-637. doi:10.1089/dna.2023.0189. https://pubmed.ncbi.nlm.nih.gov/37610843/
7. Tan, Longhai, Qu, Junjun, Wang, Junxia. 2024. Development of novel lysosome-related signatures and their potential target drugs based on bulk RNA-seq and scRNA-seq for diabetic foot ulcers. In Human genomics, 18, 62. doi:10.1186/s40246-024-00629-1. https://pubmed.ncbi.nlm.nih.gov/38862997/
8. Kalesnikoff, Janet, Rios, Eon J, Chen, Ching-Cheng, Tam, See-Ying, Galli, Stephen J. 2007. Roles of RabGEF1/Rabex-5 domains in regulating Fc epsilon RI surface expression and Fc epsilon RI-dependent responses in mast cells. In Blood, 109, 5308-17. doi:. https://pubmed.ncbi.nlm.nih.gov/17341663/