Ythdf3,也称为YTH domain family 3,是一种重要的m6A reader蛋白。m6A是一种普遍存在于真核细胞RNA上的表观遗传修饰,参与调控RNA的稳定性和功能,影响基因表达和生物学过程。Ythdf3能够识别并结合m6A修饰的RNA,从而影响RNA的稳定性和翻译效率。
Ythdf3在多种生物学过程中发挥重要作用,包括细胞分化、发育、代谢和疾病发生。在乳腺癌脑转移中,Ythdf3过度表达与脑转移相关,能够促进癌细胞与脑内皮细胞和星形胶质细胞的相互作用,促进血脑屏障的渗漏、血管生成和肿瘤生长[1]。在营养缺乏条件下,Ythdf3能够通过识别FOXO3 mRNA中的m6A修饰位点,促进FOXO3的翻译,从而诱导自噬[2]。在胰腺癌中,Ythdf3的S-棕榈酰化能够稳定MYC mRNA,从而促进肿瘤的进展[3]。m6A修饰在mRNA中普遍存在,并且影响其稳定性和功能。m6A可以影响细胞核过程,如剪接和表观遗传调控,但主要影响mRNA在细胞质中的降解。m6A标记了一组功能相关的mRNA,这些mRNA与某些生物学过程相关,包括细胞分化和细胞命运决定[4]。Ythdf3基因多态性与中国女孩Wilms瘤的风险增加相关[5]。lncRNA GAS5能够通过与YAP相互作用,促进其磷酸化和降解,从而抑制结直肠癌的进展。YTHDF3不仅是一个新的YAP靶点,而且是一个关键的YAP信号通路参与者,通过促进m6A修饰的lncRNA GAS5降解,揭示了CRC进展的新机制[6]。在胃癌中,YTHDF3表达上调,与患者预后不良相关,并促进肿瘤细胞生长和侵袭[7]。在肝细胞癌中,YTHDF3通过促进PFKL的表达和m6A修饰,促进糖酵解和肿瘤进展[8]。YTHDF3的O-糖基化能够调节其翻译调控和相分离特性,影响细胞生理和分化[9]。在肾细胞癌中,YTHDF3表达下调,与肿瘤恶性、免疫逃逸和对免疫治疗的反应不良相关。YTHDF3的野生型具有相分离特性,能够抑制肿瘤恶性、PD-L1表达和CD8+ T细胞浸润,而突变型则失去了这种功能[10]。
综上所述,Ythdf3是一种重要的m6A reader蛋白,参与调控RNA的稳定性和翻译效率,影响基因表达和生物学过程。Ythdf3在多种疾病中发挥重要作用,包括乳腺癌脑转移、自噬、胰腺癌、Wilms瘤、结直肠癌、胃癌、肝细胞癌和肾细胞癌。Ythdf3的研究有助于深入理解m6A修饰的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Chang, Guoqiang, Shi, Lei, Ye, Youqiong, He, Chuan, Huang, Suyun. 2020. YTHDF3 Induces the Translation of m6A-Enriched Gene Transcripts to Promote Breast Cancer Brain Metastasis. In Cancer cell, 38, 857-871.e7. doi:10.1016/j.ccell.2020.10.004. https://pubmed.ncbi.nlm.nih.gov/33125861/
2. Hao, WeiChao, Dian, MeiJuan, Zhou, Ying, Sun, Yan, Xiao, Dong. 2022. Autophagy induction promoted by m6A reader YTHDF3 through translation upregulation of FOXO3 mRNA. In Nature communications, 13, 5845. doi:10.1038/s41467-022-32963-0. https://pubmed.ncbi.nlm.nih.gov/36195598/
3. Zhang, Huan, Sun, Yan, Wang, Zhaokai, Jiang, Ke, Jin, Xin. 2024. ZDHHC20-mediated S-palmitoylation of YTHDF3 stabilizes MYC mRNA to promote pancreatic cancer progression. In Nature communications, 15, 4642. doi:10.1038/s41467-024-49105-3. https://pubmed.ncbi.nlm.nih.gov/38821916/
4. Murakami, Shino, Jaffrey, Samie R. . Hidden codes in mRNA: Control of gene expression by m6A. In Molecular cell, 82, 2236-2251. doi:10.1016/j.molcel.2022.05.029. https://pubmed.ncbi.nlm.nih.gov/35714585/
5. Deng, Changmi, Han, Yufeng, Zhou, Haixia, Hua, Rui-Xi, Fu, Wen. 2024. YTHDF3 gene polymorphisms increase Wilms tumor risk in Chinese girls. In Journal of Cancer, 15, 6103-6109. doi:10.7150/jca.99928. https://pubmed.ncbi.nlm.nih.gov/39440064/
6. Ni, Wen, Yao, Su, Zhou, Yunxia, Che, Liheng, Li, Jianming. 2019. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. In Molecular cancer, 18, 143. doi:10.1186/s12943-019-1079-y. https://pubmed.ncbi.nlm.nih.gov/31619268/
7. Yu, Yi, Meng, Li-Li, Chen, Xiao-Yu, Zhang, Jing, Zhu, Jin-Shui. 2023. m6A reader YTHDF3 is associated with clinical prognosis, related RNA signatures and immunosuppression in gastric cancer. In Cellular signalling, 108, 110699. doi:10.1016/j.cellsig.2023.110699. https://pubmed.ncbi.nlm.nih.gov/37149073/
8. Zhou, Rong, Ni, Wen, Qin, Chao, Zhou, Aijun, Li, Jianming. 2022. A functional loop between YTH domain family protein YTHDF3 mediated m6A modification and phosphofructokinase PFKL in glycolysis of hepatocellular carcinoma. In Journal of experimental & clinical cancer research : CR, 41, 334. doi:10.1186/s13046-022-02538-4. https://pubmed.ncbi.nlm.nih.gov/36471428/
9. Chen, Yulin, Wan, Ruixi, Zou, Zhongyu, He, Chuan, Lin, Shixian. 2023. O-GlcNAcylation determines the translational regulation and phase separation of YTHDF proteins. In Nature cell biology, 25, 1676-1690. doi:10.1038/s41556-023-01258-x. https://pubmed.ncbi.nlm.nih.gov/37945829/
10. Dai, Chenyun, Cao, Jianfu, Tang, Yuangui, Luo, Chenghua, Zheng, Junfang. 2024. YTHDF3 phase separation regulates HSPA13-dependent clear cell renal cell carcinoma development and immune evasion. In Cancer science, 115, 2588-2601. doi:10.1111/cas.16228. https://pubmed.ncbi.nlm.nih.gov/38811341/