推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6NCya-S100a9em1/Cya 基因敲除小鼠
复苏/繁育服务
产品名称:
S100a9-KO
产品编号:
S-KO-04180
品系背景:
C57BL/6NCya
小鼠资源库
* 使用本品系发表的文献需注明:S100a9-KO mice (Strain S-KO-04180) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6NCya-S100a9em1/Cya
品系编号
KOCMP-20202-S100a9-B6N-VA
产品编号
S-KO-04180
基因名
S100a9
品系背景
C57BL/6NCya
基因别称
60B8Ag; BEE22; Cagb; GAGB; L1Ag; MRP14; p14
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:1338947 Mice homozygous for one null allele exhibit abnormal immune physiology.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
S100a9位于小鼠的3号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得S100a9基因敲除小鼠,性成熟后取精子冻存。
S100a9-KO小鼠模型是由赛业生物(Cyagen)采用基因编辑技术构建的全基因组敲除小鼠。S100a9基因位于小鼠3号染色体上,由三个外显子组成,其中ATG起始密码子位于2号外显子,TAG终止密码子位于3号外显子。赛业生物(Cyagen)选择了第二个和3号外显子作为敲除目标区域,该区域包含342个碱基对的编码序列。通过基因编辑技术,赛业生物(Cyagen)构建了S100a9基因的敲除小鼠模型。随后,对出生的小鼠进行了PCR和测序分析进行基因型鉴定。此外,对于携带敲除等位基因的小鼠,其免疫系统生理出现异常。该模型可用于研究S100a9基因在小鼠体内的功能和作用。
发表文献
基因研究概述
S100A9,也称为迁移相关基因1(MIG1),是一种钙结合蛋白,属于S100蛋白家族。S100蛋白家族是一组小分子量的钙结合蛋白,主要在细胞内发挥多种生物学功能,包括细胞信号传导、细胞分化、细胞生长、细胞凋亡和细胞粘附等。S100A9在多种细胞类型中表达,包括中性粒细胞、巨噬细胞和上皮细胞,并且与多种疾病的发生发展密切相关。
S100A9在炎症反应中发挥重要作用。在炎症过程中,S100A9可以与S100A8形成异源二聚体,称为钙卫蛋白(calprotectin),参与调节中性粒细胞的募集和活化,促进炎症反应的发生和发展。此外,S100A9还可以通过结合Toll样受体4(TLR4)等受体,激活下游信号通路,进一步促进炎症反应的发生。在炎症性肠病(IBD)和心力衰竭(HF)等疾病中,S100A9的表达水平显著升高,并且与疾病的严重程度和预后密切相关。研究发现,S100A9可以作为IBD和HF的免疫相关基因(IRG)标志物,并且与免疫细胞的浸润特征有关[1]。功能富集分析表明,S100A9主要与炎症和免疫反应相关。此外,S100A9还可以促进BRCA1突变型乳腺癌的免疫抑制微环境,导致对免疫治疗的耐药性[2]。在银屑病(Ps)和银屑病关节炎(PsA)中,角质细胞来源的S100A9可以调节中性粒细胞的浸润,并且可以作为Ps/PsA的潜在生物标志物[3]。在败血症诱导的急性肺损伤(ALI)中,S100A9的表达显著上调,并且可以通过IL-17-NFκB-caspase-3信号通路加重肺损伤和上皮细胞凋亡[4,5]。此外,S100A9还可以调节巨噬细胞的M1极化,抑制细胞焦亡,通过TLR4/MyD88/NFκB信号轴减轻LPS诱导的急性肺损伤[5]。在儿童败血症性休克中,S100A9可以作为重要的诊断标志物,并且与免疫细胞的浸润特征有关[6]。在急性心肌梗死(AMI)后,S100A9可以促进巨噬细胞/小胶质细胞的炎症反应,导致心脏功能和抑郁样行为的恶化。然而,中药双心方(PCF)可以预防S100A9诱导的巨噬细胞/小胶质细胞炎症,改善AMI后大鼠的心脏功能和抑郁样行为[7]。此外,转录因子C/EBPδ可以诱导S100A8和S100A9的表观遗传变化,控制其动态基因转录[8]。在非酒精性脂肪肝(NAFLD)和多囊卵巢综合征(PCOS)中,S100A9可以作为重要的诊断标志物,并且与免疫和炎症相关通路有关[9]。在结肠炎症中,S100A9的表达显著上调,并且可以驱动脑部炎症反应的发生。然而,预防性使用S100A9抑制剂paquinimod可以减轻结肠炎症和全身性以及脑部炎症反应[10]。
综上所述,S100A9是一种重要的钙结合蛋白,在炎症反应和多种疾病的发生发展中发挥重要作用。S100A9可以作为多种疾病的免疫相关基因标志物,并且与免疫细胞的浸润特征有关。S100A9的研究有助于深入理解炎症反应的机制和多种疾病的发生发展机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Luo, Xu, Wang, Rui, Zhang, Xin, Deng, Siwei, Xie, Wen. 2023. Identification CCL2,CXCR2,S100A9 of the immune-related gene markers and immune infiltration characteristics of inflammatory bowel disease and heart failure via bioinformatics analysis and machine learning. In Frontiers in cardiovascular medicine, 10, 1268675. doi:10.3389/fcvm.2023.1268675. https://pubmed.ncbi.nlm.nih.gov/38034382/
2. Li, Jianjie, Shu, Xiaodong, Xu, Jun, Deng, Chuxia, Xu, Xiaoling. 2022. S100A9-CXCL12 activation in BRCA1-mutant breast cancer promotes an immunosuppressive microenvironment associated with resistance to immunotherapy. In Nature communications, 13, 1481. doi:10.1038/s41467-022-29151-5. https://pubmed.ncbi.nlm.nih.gov/35304461/
3. Mellor, Liliana F, Gago-Lopez, Nuria, Bakiri, Latifa, Schett, Georg, Wagner, Erwin F. 2022. Keratinocyte-derived S100A9 modulates neutrophil infiltration and affects psoriasis-like skin and joint disease. In Annals of the rheumatic diseases, 81, 1400-1408. doi:10.1136/annrheumdis-2022-222229. https://pubmed.ncbi.nlm.nih.gov/35788494/
4. Pei, Hui, Chen, Jianming, Qu, Jie, Lu, Zhongqiu. 2024. S100A9 exacerbates sepsis-induced acute lung injury via the IL17-NFκB-caspase-3 signaling pathway. In Biochemical and biophysical research communications, 710, 149832. doi:10.1016/j.bbrc.2024.149832. https://pubmed.ncbi.nlm.nih.gov/38588614/
5. Gong, Chen, Ma, Ji, Deng, Ya, Shen, Shichun, Ding, Shenggang. 2024. S100A9-/- alleviates LPS-induced acute lung injury by regulating M1 macrophage polarization and inhibiting pyroptosis via the TLR4/MyD88/NFκB signaling axis. In Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 172, 116233. doi:10.1016/j.biopha.2024.116233. https://pubmed.ncbi.nlm.nih.gov/38308971/
6. Fan, Jiajie, Shi, Shanshan, Qiu, Yunxiang, Liu, Mingnan, Shu, Qiang. 2022. Analysis of signature genes and association with immune cells infiltration in pediatric septic shock. In Frontiers in immunology, 13, 1056750. doi:10.3389/fimmu.2022.1056750. https://pubmed.ncbi.nlm.nih.gov/36439140/
7. Sun, Yize, Wang, Zheyi, Hou, Jiqiu, Wang, Chao, Zhao, Haibin. 2022. Shuangxinfang Prevents S100A9-Induced Macrophage/Microglial Inflammation to Improve Cardiac Function and Depression-Like Behavior in Rats After Acute Myocardial Infarction. In Frontiers in pharmacology, 13, 832590. doi:10.3389/fphar.2022.832590. https://pubmed.ncbi.nlm.nih.gov/35814253/
8. Jauch-Speer, Saskia-Larissa, Herrera-Rivero, Marisol, Ludwig, Nadine, Roth, Johannes, Fehler, Olesja. 2022. C/EBPδ-induced epigenetic changes control the dynamic gene transcription of S100a8 and S100a9. In eLife, 11, . doi:10.7554/eLife.75594. https://pubmed.ncbi.nlm.nih.gov/35543413/
9. Chen, Yong, Ma, Leikai, Ge, Zhouling, Pan, Yizhao, Xie, Lubin. 2022. Key Genes Associated With Non-Alcoholic Fatty Liver Disease and Polycystic Ovary Syndrome. In Frontiers in molecular biosciences, 9, 888194. doi:10.3389/fmolb.2022.888194. https://pubmed.ncbi.nlm.nih.gov/35693550/
10. Talley, Sarah, Valiauga, Rasa, Anderson, Lillian, Choudhry, Mashkoor A, Campbell, Edward M. 2021. DSS-induced inflammation in the colon drives a proinflammatory signature in the brain that is ameliorated by prophylactic treatment with the S100A9 inhibitor paquinimod. In Journal of neuroinflammation, 18, 263. doi:10.1186/s12974-021-02317-6. https://pubmed.ncbi.nlm.nih.gov/34758843/