推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Flot1em1/Cya 基因敲除小鼠
复苏/繁育服务
产品名称:
Flot1-KO
产品编号:
S-KO-02082
品系背景:
C57BL/6JCya
小鼠资源库
* 使用本品系发表的文献需注明:Flot1-KO mice (Strain S-KO-02082) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Flot1em1/Cya
品系编号
KOCMP-14251-Flot1-B6J-VA
产品编号
S-KO-02082
基因名
Flot1
品系背景
C57BL/6JCya
基因别称
reggie-2
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:1100500 Mice homozygous for a knock-out allele exhibit impaired neutrophil recruitment. Homozygous double KO with Flot2 increases susceptibility to induced necroptosis.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
Flot1位于小鼠的17号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得Flot1基因敲除小鼠,性成熟后取精子冻存。
Flot1-KO小鼠模型是由赛业生物(Cyagen)采用基因编辑技术构建的全基因组敲除小鼠。Flot1基因位于小鼠17号染色体上,由13个外显子组成,其中ATG起始密码子在2号外显子,TGA终止密码子在13号外显子。赛业生物(Cyagen)选择外显子3到外显子8作为目标区域进行敲除,该区域包含680个碱基对的编码序列。通过基因编辑技术,赛业生物(Cyagen)成功构建了Flot1-KO小鼠模型,并通过PCR和测序分析对出生的小鼠进行了基因型鉴定。携带敲除等位基因的小鼠表现出中性粒细胞招募受损,同时,与Flot2基因敲除的小鼠相比,Flot1-KO小鼠在诱导性坏死性凋亡方面表现出更高的敏感性。该模型可用于研究Flot1基因在小鼠体内的功能和作用机制,为相关疾病的研究和治疗提供重要的动物模型和基础。
基因研究概述
Flot1,也称为Flotillin-1,是一种在多种细胞过程中发挥重要作用的蛋白。Flot1是一种脂筏相关蛋白,脂筏是细胞膜上富含胆固醇和鞘脂的区域,参与细胞信号转导、细胞粘附、细胞骨架组织等多种细胞过程。Flot1通过在脂筏中形成复合物,参与调节多种信号转导途径,影响细胞生长、分化、迁移和凋亡等生物学过程。
在肿瘤发生发展过程中,Flot1的表达水平和功能发生改变,与肿瘤的发生、发展和预后密切相关。例如,在胶质母细胞瘤(GBM)中,Flot1的表达水平上调,通过影响自噬体与溶酶体的融合,维持自噬流,从而增强GBM的放疗抵抗性[1]。在非小细胞肺癌(NSCLC)中,Flot1的表达水平上调,通过降低辐射诱导的DNA损伤和促进免疫逃逸,增强NSCLC的放疗抵抗性[4]。在肺腺癌(LUAD)中,Flot1的表达水平上调,通过调节ERK/AKT信号通路,促进肿瘤的发生发展、诱导上皮-间质转化(EMT)和调节细胞周期[5]。
此外,Flot1还与其他疾病的发生发展相关。例如,在儿童败血症中,Flot1的表达水平上调,与败血症的发生发展相关[2]。在B19病毒感染中,Flot1的表达水平上调,与病毒的持续感染和疾病的病理发生相关[3]。
综上所述,Flot1是一种在多种细胞过程中发挥重要作用的蛋白,与肿瘤的发生发展、儿童败血症和B19病毒感染等多种疾病的发生发展密切相关。深入研究Flot1的功能和调控机制,有助于揭示疾病的病理发生机制,为疾病的诊断、治疗和预防提供新的思路和策略。
参考文献:
1. Zeng, Liang, Zheng, Wang, Liu, Xinglong, Zhang, Jianghong, Shao, Chunlin. 2023. SDC1-TGM2-FLOT1-BHMT complex determines radiosensitivity of glioblastoma by influencing the fusion of autophagosomes with lysosomes. In Theranostics, 13, 3725-3743. doi:10.7150/thno.81999. https://pubmed.ncbi.nlm.nih.gov/37441590/
2. Zhang, Xiaojuan, Cui, Yuqing, Ding, Xianfei, Zhang, Haibo, Sun, Tongwen. . Analysis of mRNA‑lncRNA and mRNA‑lncRNA-pathway co‑expression networks based on WGCNA in developing pediatric sepsis. In Bioengineered, 12, 1457-1470. doi:10.1080/21655979.2021.1908029. https://pubmed.ncbi.nlm.nih.gov/33949285/
3. Kerr, J R. . Pathogenesis of parvovirus B19 infection: host gene variability, and possible means and effects of virus persistence. In Journal of veterinary medicine. B, Infectious diseases and veterinary public health, 52, 335-9. doi:. https://pubmed.ncbi.nlm.nih.gov/16316396/
4. Wang, Yingying, Meng, Lu, Meng, Shuyan, Wu, Xiaoting, Gong, Xiaomei. . Flotillin-1 enhances radioresistance through reducing radiation-induced DNA damage and promoting immune escape via STING signaling pathway in non-small cell lung cancer. In Cancer biology & therapy, 24, 2203332. doi:10.1080/15384047.2023.2203332. https://pubmed.ncbi.nlm.nih.gov/37131290/
5. Zhang, Louqian, Mao, Yuan, Mao, Qixing, Xu, Lin, Wang, Jun. 2019. FLOT1 promotes tumor development, induces epithelial-mesenchymal transition, and modulates the cell cycle by regulating the Erk/Akt signaling pathway in lung adenocarcinoma. In Thoracic cancer, 10, 909-917. doi:10.1111/1759-7714.13027. https://pubmed.ncbi.nlm.nih.gov/30838797/