FEN1(Flap Endonuclease 1)是一种重要的DNA修复酶,在多种细胞过程中发挥着关键作用,包括DNA复制、DNA合成、DNA损伤修复、Okazaki片段成熟、碱基切除修复以及维持基因组稳定性等[1]。FEN1在多种类型的癌症中表达上调,被认为是一种潜在的致癌基因[2]。此外,FEN1的基因多态性与多种人类疾病的风险相关,包括胶质瘤、乳腺癌、肺癌、圆锥角膜和Fuchs内皮角膜营养不良等[3]。
FEN1在DNA修复中的作用至关重要。FEN1的主要功能是切割DNA链上的5'突出端,以便进行DNA修复和复制。FEN1的活性对于维持基因组的稳定性和防止突变至关重要。此外,FEN1还在Okazaki片段的成熟过程中发挥作用,Okazaki片段是在DNA复制过程中产生的短的DNA片段,FEN1通过切割这些片段的5'突出端,使它们能够连接起来,形成完整的DNA链。
FEN1在癌症中的作用也备受关注。FEN1在多种类型的癌症中表达上调,被认为是一种潜在的致癌基因。FEN1的表达上调与肿瘤的侵袭性和转移能力增加相关。此外,FEN1的基因多态性与多种癌症的风险相关,包括乳腺癌、肺癌和结直肠癌等。FEN1的基因多态性可以影响FEN1的活性和功能,从而影响DNA修复和复制的效率,增加癌症的风险。
FEN1在DNA损伤修复中的作用也备受关注。FEN1在碱基切除修复和核苷酸切除修复等DNA损伤修复途径中发挥作用。FEN1的活性对于维持基因组的稳定性和防止突变至关重要。此外,FEN1还在DNA损伤修复过程中与其他DNA修复酶相互作用,如APEX2和EXO1等,共同参与DNA损伤的修复。
FEN1在干细胞中的表达和功能也备受关注。FEN1在多种类型的干细胞中表达,包括胚胎干细胞、神经干细胞和造血干细胞等。FEN1的表达上调可以增加干细胞的自我更新能力和多能性,促进干细胞的增殖和分化。此外,FEN1还在干细胞的DNA修复和复制过程中发挥作用,维持干细胞的基因组稳定性和功能。
FEN1在DNA损伤修复和癌症中的作用备受关注。FEN1的基因多态性与多种癌症的风险相关,包括乳腺癌、肺癌和结直肠癌等。FEN1的表达上调与肿瘤的侵袭性和转移能力增加相关。FEN1的活性对于维持基因组的稳定性和防止突变至关重要。此外,FEN1还在DNA损伤修复过程中与其他DNA修复酶相互作用,共同参与DNA损伤的修复。FEN1的研究有助于深入理解DNA损伤修复和癌症的发生机制,为癌症的治疗和预防提供新的思路和策略[4][5][6][7][8][9][10]。
参考文献:
1. Xian, Hongxu, Watari, Kosuke, Sanchez-Lopez, Elsa, Shadel, Gerald S, Karin, Michael. 2022. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. In Immunity, 55, 1370-1385.e8. doi:10.1016/j.immuni.2022.06.007. https://pubmed.ncbi.nlm.nih.gov/35835107/
2. Moss, Bernard. 2013. Poxvirus DNA replication. In Cold Spring Harbor perspectives in biology, 5, . doi:10.1101/cshperspect.a010199. https://pubmed.ncbi.nlm.nih.gov/23838441/
3. Mengwasser, Kristen E, Adeyemi, Richard O, Leng, Yumei, D'Andrea, Alan D, Elledge, Stephen J. 2019. Genetic Screens Reveal FEN1 and APEX2 as BRCA2 Synthetic Lethal Targets. In Molecular cell, 73, 885-899.e6. doi:10.1016/j.molcel.2018.12.008. https://pubmed.ncbi.nlm.nih.gov/30686591/
4. Murai, Junko, Huang, Shar-yin N, Das, Benu Brata, Takeda, Shunichi, Pommier, Yves. . Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. In Cancer research, 72, 5588-99. doi:10.1158/0008-5472.CAN-12-2753. https://pubmed.ncbi.nlm.nih.gov/23118055/
5. Nayarisseri, Anuraj, Khandelwal, Ravina, Tanwar, Poonam, Speck-Planche, Alejandro, Singh, Sanjeev Kumar. . Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery. In Current drug targets, 22, 631-655. doi:10.2174/1389450122999210104205732. https://pubmed.ncbi.nlm.nih.gov/33397265/
6. Andronikou, Christina, Burdova, Kamila, Dibitetto, Diego, Jonkers, Jos, Rottenberg, Sven. 2024. PARG-deficient tumor cells have an increased dependence on EXO1/FEN1-mediated DNA repair. In The EMBO journal, 43, 1015-1042. doi:10.1038/s44318-024-00043-2. https://pubmed.ncbi.nlm.nih.gov/38360994/
7. Peng, Zhenxiang, Wang, Shuling, Wen, Diguang, Lv, Lin, Li, Chuanfei. 2024. FEN1 upregulation mediated by SUMO2 via antagonizing proteasomal degradation promotes hepatocellular carcinoma stemness. In Translational oncology, 44, 101916. doi:10.1016/j.tranon.2024.101916. https://pubmed.ncbi.nlm.nih.gov/38513457/
8. Ying, Nanjiao, Wang, Shuo, Xu, Hong, Wang, Yanyi. . Association between FEN1 Polymorphisms -69G>A and 4150G>T with Susceptibility in Human Disease: A Meta-Analysis. In Iranian journal of public health, 44, 1574-9. doi:. https://pubmed.ncbi.nlm.nih.gov/26811808/
9. Basic, Vladimir, Zhang, Boxi, Domert, Jakob, Pellas, Ulrika, Tot, Tibor. 2021. Integrative meta-analysis of gene expression profiles identifies FEN1 and ENDOU as potential diagnostic biomarkers for cervical squamous cell carcinoma. In Oncology letters, 22, 840. doi:10.3892/ol.2021.13101. https://pubmed.ncbi.nlm.nih.gov/34712364/
10. Mesquita, Katia A, Ali, Reem, Doherty, Rachel, Rakha, Emad A, Madhusudan, Srinivasan. 2021. FEN1 Blockade for Platinum Chemo-Sensitization and Synthetic Lethality in Epithelial Ovarian Cancers. In Cancers, 13, . doi:10.3390/cancers13081866. https://pubmed.ncbi.nlm.nih.gov/33919707/