推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Hnrnpdem1/Cya 基因敲除小鼠
复苏/繁育服务
产品名称:
Hnrnpd-KO
产品编号:
S-KO-01184
品系背景:
C57BL/6JCya
小鼠资源库
* 使用本品系发表的文献需注明:Hnrnpd-KO mice (Strain S-KO-01184) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Hnrnpdem1/Cya
品系编号
KOCMP-11991-Hnrnpd-B6J-VB
产品编号
S-KO-01184
基因名
Hnrnpd
品系背景
C57BL/6JCya
基因别称
Auf1; Hnrpd
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:101947 Homozygous mutation of this gene results in fetal growth retardation and decreased body weight. Mice show increased susceptibility to bacterial infection and endotoxin shock.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
Hnrnpd位于小鼠的5号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得Hnrnpd基因敲除小鼠,性成熟后取精子冻存。
Hnrnpd-KO小鼠模型由赛业生物(Cyagen)构建,采用基因编辑技术。该模型通过敲除Hnrnpd基因(NCBI Reference Sequence: NM_001077265; Ensembl: ENSMUSG00000000568),旨在研究该基因在小鼠体内的功能。Hnrnpd基因位于小鼠5号染色体上,由9个外显子组成,其中ATG起始密码子在1号外显子,TAA终止密码子在8号外显子(Transcript Hnrnpd-211: ENSMUST00000172361)。敲除区域选择在3号外显子至7号外显子,该区域包含710 bp编码序列。敲除区域的构建过程包括将核糖核蛋白(RNP)和靶向载体共同注入受精卵。出生的小鼠将进行PCR和测序分析进行基因型鉴定。此外,Hnrnpd基因的全身性基因敲除会导致小鼠表现出胎儿生长迟缓、体重减轻、对细菌感染和内毒素休克的易感性增加等表型。
基因研究概述
HNRNPD,即异核核糖核蛋白D,是一种在真核细胞中发挥重要作用的RNA结合蛋白。它主要定位于细胞核和细胞质中,参与多种RNA加工过程,包括RNA剪接、运输、稳定性和翻译。HNRNPD与许多RNA结合蛋白家族成员相互作用,形成一个复杂的网络,共同调控基因表达和生物学过程。HNRNPD的表达失衡与多种疾病的发生和发展相关,包括心血管疾病、神经退行性疾病、癌症和骨关节炎等。本文将基于相关研究文献,对HNRNPD的生物学功能和疾病关联进行综述。
研究表明,HNRNPD在心肌细胞的自噬和凋亡中发挥重要作用。METTL3和ALKBH5是两种RNA甲基转移酶和去甲基化酶,它们分别促进和抑制TFEB mRNA的m6A修饰。TFEB是一种关键的转录因子,调节溶酶体生物合成和自噬基因的表达。METTL3通过在TFEB mRNA的3'-非翻译区(3'-UTR)上添加m6A修饰,促进HNRNPD与TFEB前mRNA的结合,从而降低TFEB的表达水平。ALKBH5则通过去除TFEB mRNA上的m6A修饰,抑制HNRNPD的结合,从而提高TFEB的表达水平。因此,METTL3和ALKBH5通过调节TFEB的表达,进而影响心肌细胞的自噬和凋亡[1]。
HNRNPD还在帕金森病(PD)的发病机制中发挥作用。AUF1是HNRNPD的一种同源异构体,它与α-突触核蛋白(SNCA)mRNA的3'-UTR结合,影响SNCA的核输出、稳定性和翻译。AUF1在细胞核中抑制SNCA前mRNA的成熟,并促进SNCA mRNA的核输出。在细胞质中,AUF1通过招募CNOT1-CNOT7脱腺苷酸化酶复合物,缩短SNCA mRNA的poly(A)尾,从而降低SNCA mRNA的稳定性。此外,AUF1还抑制SNCA mRNA与核糖体的结合,进一步降低SNCA的翻译效率。因此,AUF1通过多种机制调节SNCA的表达,影响PD的发生和发展[2]。
HNRNPD还参与环状RNA(circRNA)的生物合成。circRNA是由反向剪接产生的非编码RNA,它在细胞中发挥多种生物学功能。研究发现,HNRNPD的敲低导致多种circRNA水平的升高。HNRNPD优先结合富含A和U核苷酸基序的circRNA前体,并且circRNA的侧翼内含子中HNRNPD结合位点的数量和强度更高。HNRNPD通过抑制circRNA的生物合成,促进线性mRNA的产生。例如,HNRNPD抑制circCDK1的生物合成,促进CDK1 mRNA的产生,进而调节细胞周期和凋亡。因此,HNRNPD通过调控circRNA的生物合成,影响基因表达和细胞生理过程[3]。
HNRNPD还参与肿瘤的发生和发展。研究发现,lncRNA SNHG1通过结合HNRNPD,稳定SERPINA3 mRNA,进而上调SERPINA3的表达,促进结直肠癌细胞(CRC)的迁移和侵袭[4]。NFκB(RelA)通过结合HNRNPD启动子,促进HNRNPD的转录,进而影响口腔鳞状细胞癌(OSCC)的发生和发展[5]。PFDN2通过促进HNRNPD的核转位,上调MYBL2的表达,进而促进胃癌细胞的细胞周期进程[6]。lncRNA THOR通过结合HNRNPD,维持HNRNPD的蛋白稳定性,进而上调PDK1的表达,激活PI3K-AKT和MAPK信号通路,促进乳腺癌细胞的增殖和转移[7]。HNRNPD和MAD2L2在肺腺癌(LUAD)组织中高表达,它们形成转录调控轴,促进LUAD的进展[8]。HNRNPD还通过上调FOXM1的表达,促进软骨细胞的衰老和骨关节炎(OA)的进展[9]。HNRNPD与ZHX2相互作用,调节linc00707/miR-651-3p/SP2轴,影响胶质瘤细胞的血管生成拟态形成[10]。
综上所述,HNRNPD是一种多功能的RNA结合蛋白,参与多种RNA加工过程,影响基因表达和生物学过程。HNRNPD的表达失衡与多种疾病的发生和发展相关,包括心血管疾病、神经退行性疾病、癌症和骨关节炎等。深入研究HNRNPD的生物学功能和疾病关联,有助于揭示RNA加工的分子机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Song, Huiwen, Feng, Xing, Zhang, Heng, Zhao, Yongxiang, Zhang, Zhiyong. 2019. METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. In Autophagy, 15, 1419-1437. doi:10.1080/15548627.2019.1586246. https://pubmed.ncbi.nlm.nih.gov/30870073/
2. Kattan, Fedon-Giasin, Koukouraki, Pelagia, Anagnostopoulos, Athanasios K, Tsangaris, George T, Doxakis, Epaminondas. 2023. RNA binding protein AUF1/HNRNPD regulates nuclear export, stability and translation of SNCA transcripts. In Open biology, 13, 230158. doi:10.1098/rsob.230158. https://pubmed.ncbi.nlm.nih.gov/37989221/
3. Chang, Shuhui, Wang, Yucong, Wang, Xiaolin, Shan, Ge, Chen, Liang. 2024. HNRNPD regulates the biogenesis of circRNAs and the ratio of mRNAs to circRNAs for a set of genes. In RNA biology, 21, 1-15. doi:10.1080/15476286.2024.2386500. https://pubmed.ncbi.nlm.nih.gov/39180763/
4. Yang, Huan, Gong, Chunli, Wu, Yuyun, Bai, Jianying, Xiao, Yufeng. 2024. LncRNA SNHG1 facilitates colorectal cancer cells metastasis by recruiting HNRNPD protein to stabilize SERPINA3 mRNA. In Cancer letters, 604, 217217. doi:10.1016/j.canlet.2024.217217. https://pubmed.ncbi.nlm.nih.gov/39233042/
5. Kumar, Vikas, Kumar, Anurag, Kumar, Manish, Mishra, Deepika, Chauhan, Shyam Singh. 2022. NFκB (RelA) mediates transactivation of hnRNPD in oral cancer cells. In Scientific reports, 12, 5944. doi:10.1038/s41598-022-09963-7. https://pubmed.ncbi.nlm.nih.gov/35396527/
6. He, Qiuming, Ding, Zheyu, Chen, Tingna, Wang, Shuyi, Xiong, Bin. 2023. PFDN2 promotes cell cycle progression via the hnRNPD-MYBL2 axis in gastric cancer. In Frontiers in oncology, 13, 1164070. doi:10.3389/fonc.2023.1164070. https://pubmed.ncbi.nlm.nih.gov/37538116/
7. Hu, Hongtao, Zhang, Hanqiu, Xing, Yue, Wu, Yanting, Huang, Hefeng. 2022. The lncRNA THOR interacts with and stabilizes hnRNPD to promote cell proliferation and metastasis in breast cancer. In Oncogene, 41, 5298-5314. doi:10.1038/s41388-022-02495-4. https://pubmed.ncbi.nlm.nih.gov/36329124/
8. Gu, Zhuoyu, Ding, Weizheng, Yuan, Shuang, Han, Xiaodan, Li, Yixin. 2024. HNRNPD/MAD2L2 axis facilitates lung adenocarcinoma progression and is a potential prognostic biomarker. In Cellular signalling, 124, 111443. doi:10.1016/j.cellsig.2024.111443. https://pubmed.ncbi.nlm.nih.gov/39366534/
9. Jiang, Huanyu, Zhang, Yubiao, Hu, Geliang, Li, Yaming, Zhou, Yan. 2024. RNA-binding protein HNRNPD promotes chondrocyte senescence and osteoarthritis progression through upregulating FOXM1. In Communications biology, 7, 1695. doi:10.1038/s42003-024-07407-8. https://pubmed.ncbi.nlm.nih.gov/39719453/
10. Yu, Sifei, Ruan, Xuelei, Liu, Xiaobai, Lin, Yang, Xue, Yixue. 2021. HNRNPD interacts with ZHX2 regulating the vasculogenic mimicry formation of glioma cells via linc00707/miR-651-3p/SP2 axis. In Cell death & disease, 12, 153. doi:10.1038/s41419-021-03432-1. https://pubmed.ncbi.nlm.nih.gov/33542193/