AATK,也称为Apoptosis-associated Tyrosine Kinase,是一种重要的丝氨酸/苏氨酸激酶。AATK在多种生物学过程中发挥作用,包括细胞增殖、分化和凋亡。AATK的激酶活性对细胞生长和细胞周期调控至关重要。AATK还参与细胞信号传导,通过磷酸化下游靶蛋白,如TP53,调节细胞功能。
在癌症中,AATK的表达和功能发生改变。研究表明,AATK的表达与多种癌症患者的生存率相关。例如,在胰腺腺癌、低级别胶质瘤、肺癌、乳腺癌、头颈部癌症中,AATK的表观遗传沉默与患者生存率下降相关。AATK的表观遗传沉默可能通过DNA甲基转移酶(DNMTs)介导,DNMTs的抑制可以重新激活AATK的表达[1]。此外,通过CRISPR/dCas9系统靶向EZH2或DNMT3A可以抑制AATK的表达。AATK作为Ser/Thr激酶,在癌症中发挥肿瘤抑制因子的作用[2]。
AATK在细胞周期调控中发挥重要作用。AATK通过磷酸化TP53在Ser366位点,调节细胞周期进程。AATK的激酶活性可以降低细胞周期调节因子Cyclin D1和WEE1的表达,从而抑制细胞增殖。AATK的缺失导致细胞对铁死亡的敏感性增加,这与内体循环和铁积累的增加有关[3]。此外,AATK的缺失还与微RNA-558诱导的肺癌细胞对放疗的抵抗性相关[4]。AATK的缺失还与胃癌细胞的增殖、迁移和侵袭有关,而circPTK2可以抑制胃癌细胞的这些行为[5]。
除了在癌症中的作用,AATK还与其他疾病相关。例如,AATK的表达与智力障碍相关。在118个中东家庭中进行的研究中,AATK被确定为智力障碍的候选基因之一[6]。此外,AATK的表达还与糖尿病的发生和进展相关。在胰岛素抵抗条件下,AATK的表达下调,这与β细胞质量的补偿性扩张相关[7]。AATK的表达还与肌萎缩侧索硬化症(ALS)相关。在ALS患者中,AATK的表达上调,这可能与其作为miR-338-3p的宿主基因相关[8]。
综上所述,AATK是一种重要的丝氨酸/苏氨酸激酶,在细胞增殖、分化和凋亡中发挥重要作用。AATK在癌症中发挥肿瘤抑制因子的作用,其表达和功能的改变与患者的生存率相关。AATK还与其他疾病相关,包括智力障碍、糖尿病和ALS。对AATK的研究有助于深入理解其生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Woods, Michelle L, Weiss, Astrid, Sokol, Anna M, Schermuly, Ralph T, Dammann, Reinhard H. 2022. Epigenetically silenced apoptosis-associated tyrosine kinase (AATK) facilitates a decreased expression of Cyclin D1 and WEE1, phosphorylates TP53 and reduces cell proliferation in a kinase-dependent manner. In Cancer gene therapy, 29, 1975-1987. doi:10.1038/s41417-022-00513-x. https://pubmed.ncbi.nlm.nih.gov/35902728/
2. Ding, Li-Yun, Hou, Ya-Chin, Kuo, I-Ying, Shan, Yan-Shen, Huang, Po-Hsien. 2020. Epigenetic silencing of AATK in acinar to ductal metaplasia in murine model of pancreatic cancer. In Clinical epigenetics, 12, 87. doi:10.1186/s13148-020-00878-6. https://pubmed.ncbi.nlm.nih.gov/32552862/
3. Lee, Wei-Chang, Moi, Sin-Hua, Yang, Sheau-Fang, Tseng, Ho-Hsing, Liu, Yu-Peng. 2025. Downregulation of AATK enhances susceptibility to ferroptosis by promoting endosome recycling in gefitinib-resistant lung cancer cells. In The Journal of pathology, , . doi:10.1002/path.6393. https://pubmed.ncbi.nlm.nih.gov/39871626/
4. Zhu, Rui-Xia, Song, Chun-Hui, Yang, Jin-Shan, Li, Bao-Jian, Liu, Si-Hai. 2016. Downregulation of AATK mediates microRNA-558-induced resistance of A549 cells to radiotherapy. In Molecular medicine reports, 14, 2846-52. doi:10.3892/mmr.2016.5579. https://pubmed.ncbi.nlm.nih.gov/27485693/
5. Gao, Ling, Xia, Tingting, Qin, Mingde, Jiang, Linhua, Zhu, Xinguo. 2021. CircPTK2 Suppresses the Progression of Gastric Cancer by Targeting the MiR-196a-3p/AATK Axis. In Frontiers in oncology, 11, 706415. doi:10.3389/fonc.2021.706415. https://pubmed.ncbi.nlm.nih.gov/34604044/
6. Al-Kasbi, Ghalia, Al-Murshedi, Fathiya, Al-Kindi, Adila, Al-Yahyaee, Said, Al-Maawali, Almundher. 2022. The diagnostic yield, candidate genes, and pitfalls for a genetic study of intellectual disability in 118 middle eastern families. In Scientific reports, 12, 18862. doi:10.1038/s41598-022-22036-z. https://pubmed.ncbi.nlm.nih.gov/36344539/
7. Jacovetti, Cécile, Jimenez, Veronica, Ayuso, Eduard, Bosch, Fatima, Regazzi, Romano. 2015. Contribution of Intronic miR-338-3p and Its Hosting Gene AATK to Compensatory β-Cell Mass Expansion. In Molecular endocrinology (Baltimore, Md.), 29, 693-702. doi:10.1210/me.2014-1299. https://pubmed.ncbi.nlm.nih.gov/25751313/
8. Vrabec, Katarina, Boštjančič, Emanuela, Koritnik, Blaž, Glavač, Damjan, Ravnik-Glavač, Metka. 2018. Differential Expression of Several miRNAs and the Host Genes AATK and DNM2 in Leukocytes of Sporadic ALS Patients. In Frontiers in molecular neuroscience, 11, 106. doi:10.3389/fnmol.2018.00106. https://pubmed.ncbi.nlm.nih.gov/29670510/