Hgfac基因编码的是肝细胞生长因子(HGF)的激活剂,HGF是一种重要的生长因子,在细胞的增殖、迁移和存活等方面发挥重要作用。Hgfac基因的表达和功能调控机制复杂,与多种生物学过程和疾病的发生发展密切相关。
Ohki等人(2012)的研究发现,在胰腺β细胞中,HNF1α转录因子直接调控Hgfac基因的表达[1]。HNF1α基因突变会导致一种单基因糖尿病,而Hgfac基因表达的降低可能参与了β细胞质量和功能的调控。此外,Wu等人(2023)的研究表明,Hgfac基因在结直肠癌肝转移中发挥着重要作用,可能是结直肠癌肝转移的潜在治疗靶点[2]。
Yin等人(2019)的研究发现,在肝癌组织中,Hgfac基因的表达下调,并且与DNA甲基化程度呈负相关,这表明Hgfac基因的表达可能受到DNA甲基化的调控。此外,Hgfac基因的低表达与肝癌患者的预后不良相关[3]。Zou和Cao(2023)的研究进一步揭示了miR-4270可以通过抑制DNMT3A介导的Hgfac启动子甲基化来抑制肝癌的进展[4]。
Tapper等人(2001)的研究发现,在卵巢癌的发生和进展过程中,Hgfac基因的表达下调[5]。Banna等人(2022)的研究表明,Hgfac基因在酒精和尼古丁消费中发挥着重要作用,并且与性别相关[6]。Kummeling等人(2011)的研究发现,在狗的先天性门体分流(CPSS)中,Hgfac基因的表达与分流术后的预后相关[7]。Cai等人(2023)的研究发现,Hgfac基因在阿尔茨海默病的发生和发展中发挥着重要作用[8]。
综上所述,Hgfac基因的表达和功能调控与多种生物学过程和疾病的发生发展密切相关。Hgfac基因的表达受到转录因子、microRNA和DNA甲基化等多种因素的调控,并且与肝癌、结直肠癌、卵巢癌和阿尔茨海默病等多种疾病的发生和发展密切相关。因此,深入研究Hgfac基因的生物学功能和调控机制,对于理解相关疾病的发生发展机制和寻找新的治疗靶点具有重要意义。
参考文献:
1. Ohki, Tsuyoshi, Sato, Yoshifumi, Yoshizawa, Tatsuya, Yamada, Kentaro, Yamagata, Kazuya. 2012. Identification of hepatocyte growth factor activator (Hgfac) gene as a target of HNF1α in mouse β-cells. In Biochemical and biophysical research communications, 425, 619-24. doi:10.1016/j.bbrc.2012.07.134. https://pubmed.ncbi.nlm.nih.gov/22877752/
2. Wu, Qi-Qiao, Wang, Xing-Yue, Wu, Wei-Xun, Sun, Jing, Zeng, Zhao-Chong. 2023. Molecular mechanisms investigation for liver metastasis of colorectal cancer by combined bioinformatic gene expression profile analysis. In Cancer treatment and research communications, 35, 100694. doi:10.1016/j.ctarc.2023.100694. https://pubmed.ncbi.nlm.nih.gov/36868002/
3. Yin, Li, Mu, Yudong, Lin, Yingzi, Xia, Qianfeng. 2019. HGFAC expression decreased in liver cancer and its low expression correlated with DNA hypermethylation and poor prognosis. In Journal of cellular biochemistry, 120, 9692-9699. doi:10.1002/jcb.28247. https://pubmed.ncbi.nlm.nih.gov/30635948/
4. Zou, Qiang, Cao, Shasha. 2023. miR-4270 suppresses hepatocellular carcinoma progression by inhibiting DNMT3A-mediated methylation of HGFAC promoter. In PeerJ, 11, e16566. doi:10.7717/peerj.16566. https://pubmed.ncbi.nlm.nih.gov/38077422/
5. Tapper, J, Kettunen, E, El-Rifai, W, Andersson, L C, Knuutila, S. . Changes in gene expression during progression of ovarian carcinoma. In Cancer genetics and cytogenetics, 128, 1-6. doi:. https://pubmed.ncbi.nlm.nih.gov/11454421/
6. Bai, Zhongyuan, Hao, Jiawei, Chen, Miaoran, Lv, Yongqiang, Li, Feng. 2024. Integrating plasma proteomics with genome-wide association data to identify novel drug targets for inflammatory bowel disease. In Scientific reports, 14, 16251. doi:10.1038/s41598-024-66780-w. https://pubmed.ncbi.nlm.nih.gov/39009667/
7. Li, Ling, Huang, Yong-Ta, Wang, Li-Ting, Huang, Hui-Pin, Li, Xiao-Long. 2024. ADH4-a potential prognostic marker for hepatocellular carcinoma with possible immune-related implications. In BMC cancer, 24, 927. doi:10.1186/s12885-024-12675-y. https://pubmed.ncbi.nlm.nih.gov/39090641/
8. Banna, F K El, Otto, J M, Mulloy, S M, Vrieze, S I, Lee, A M. 2022. Back-translating GWAS findings to animal models reveals a role for Hgfac and Slc39a8 in alcohol and nicotine consumption. In Scientific reports, 12, 9336. doi:10.1038/s41598-022-13283-1. https://pubmed.ncbi.nlm.nih.gov/35661789/