Slc40a1,也称为ferroportin1/IREG1/MTP1,是一种重要的铁转运蛋白,负责哺乳动物细胞内的铁转运和调节。它编码的蛋白质主要表达在肠道上皮细胞、巨噬细胞和肝细胞等组织中,参与维持机体铁代谢的平衡。Slc40a1基因突变会导致铁代谢紊乱,引发遗传性血色病等疾病。
在肝癌的免疫微环境中,肿瘤相关巨噬细胞(TAMs)与不良预后相关,而Slc40a1和GPNMB在这些细胞中发挥炎症作用[1]。Nrf2激活剂bitopertin可以通过激活Nrf2来抑制破骨细胞的分化,并改善绝经后骨丢失。Nrf2转录激活Slc40a1基因,降低破骨细胞中的细胞内铁水平,从而抑制破骨细胞分化[2]。在儿童过敏性哮喘中,Slc40a1是气道巨噬细胞中的关键铁代谢相关基因,其表达下调与气道炎症相关[3]。Slc40a1基因突变与非HFE相关的遗传性血色病有关,其功能分析表明该突变导致Slc40a1 mRNA水平降低和铁转运蛋白膜定位增加[4]。在IDH1突变型胶质瘤中,PRMT1-PTX3轴通过抑制SLC40A1的表达来调节铁蛋白基因/铁储存,并抑制铁蛋白吞噬过程[5]。铁蛋白病是一种遗传性铁代谢紊乱,其特征是血清铁蛋白水平升高而转铁蛋白饱和度正常,以及器官中铁的进行性积累[6]。在肿瘤细胞中,Slc40a1/铁转运蛋白1被确定为自噬消除的新底物,其降解通过SQSTM1促进铁死亡[7]。在 TMZ 耐药性胶质母细胞瘤干细胞 (GSC) 中,erianin 通过 REST/LRSAM1 介导的 SLC40A1 泛素化诱导铁死亡,从而克服 TMZ 耐药性[8]。在西班牙 C282Y 突变的 HFE 基因纯合子中,Slc40a1 基因的变异与铁超载的严重程度和临床后果相关[9]。
综上所述,Slc40a1基因在铁代谢、炎症和肿瘤发生发展中发挥着重要作用。Slc40a1基因突变会导致遗传性血色病等疾病,而Slc40a1的表达和功能异常也与多种疾病相关。深入研究Slc40a1的生物学功能和调控机制,有助于理解铁代谢紊乱和相关疾病的发病机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Zhang, Qiming, He, Yao, Luo, Nan, Ren, Xianwen, Zhang, Zemin. . Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. In Cell, 179, 829-845.e20. doi:10.1016/j.cell.2019.10.003. https://pubmed.ncbi.nlm.nih.gov/31675496/
2. Dong, Yimin, Kang, Honglei, Peng, Renpeng, Li, Feng, Song, Kehan. 2024. A clinical-stage Nrf2 activator suppresses osteoclast differentiation via the iron-ornithine axis. In Cell metabolism, 36, 1679-1695.e6. doi:10.1016/j.cmet.2024.03.005. https://pubmed.ncbi.nlm.nih.gov/38569557/
3. Wang, Zhili, He, Yu, Cun, Yupeng, Zhao, Yan, Luo, Zhengxiu. 2023. Transcriptomic analysis identified SLC40A1 as a key iron metabolism-related gene in airway macrophages in childhood allergic asthma. In Frontiers in cell and developmental biology, 11, 1164544. doi:10.3389/fcell.2023.1164544. https://pubmed.ncbi.nlm.nih.gov/37123407/
4. Zhang, Wei, Lv, Tingxia, Huang, Jian, Ou, Xiaojuan. . Type 4B hereditary hemochromatosis associated with a novel mutation in the SLC40A1 gene: A case report and a review of the literature. In Medicine, 96, e8064. doi:10.1097/MD.0000000000008064. https://pubmed.ncbi.nlm.nih.gov/28930842/
5. Lathoria, Kirti, Gowda, Pruthvi, Umdor, Sonia B, Suri, Vaishali, Sen, Ellora. 2023. PRMT1 driven PTX3 regulates ferritinophagy in glioma. In Autophagy, 19, 1997-2014. doi:10.1080/15548627.2023.2165757. https://pubmed.ncbi.nlm.nih.gov/36647288/
6. Alvarenga, Aline Morgan, Brissot, Pierre, Santos, Paulo Caleb Junior Lima. . Haemochromatosis revisited. In World journal of hepatology, 14, 1931-1939. doi:10.4254/wjh.v14.i11.1931. https://pubmed.ncbi.nlm.nih.gov/36483608/
7. Li, Jingbo, Liu, Jiao, Xu, Yinghua, Wang, Xiaoyan, Tang, Daolin. 2021. Tumor heterogeneity in autophagy-dependent ferroptosis. In Autophagy, 17, 3361-3374. doi:10.1080/15548627.2021.1872241. https://pubmed.ncbi.nlm.nih.gov/33404288/
8. Mansuer, Maierdan, Zhou, Lin, Wang, Chengbin, Gao, Liang, Jiang, Yang. 2024. Erianin induces ferroptosis in GSCs via REST/LRSAM1 mediated SLC40A1 ubiquitination to overcome TMZ resistance. In Cell death & disease, 15, 522. doi:10.1038/s41419-024-06902-4. https://pubmed.ncbi.nlm.nih.gov/39039049/
9. Altès, Albert, Bach, Vanessa, Ruiz, Angels, Felez, Jordi, Baiget, Montserrat. 2008. Does the SLC40A1 gene modify HFE-related haemochromatosis phenotypes? In Annals of hematology, 88, 341-5. doi:10.1007/s00277-008-0590-9. https://pubmed.ncbi.nlm.nih.gov/18820912/