Mettl17,也称为Methyltransferase-like 17,是一种定位于线粒体的蛋白质,主要参与调控线粒体的功能,包括基因表达、能量代谢和细胞凋亡。Mettl17通过修饰线粒体RNA,影响线粒体蛋白的翻译,进而影响细胞的功能和生物学过程。
在结直肠癌中,Mettl17的表达与细胞对铁死亡的抗性呈正相关。Mettl17的表达上调会降低细胞对铁死亡的敏感性,促进肿瘤的生长和转移。此外,Mettl17的表达上调还会导致线粒体功能的紊乱,能量代谢的异常,以及细胞内和线粒体内脂质过氧化和活性氧水平的升高[1]。
Mettl17还与雌激素受体相互作用,影响雌激素受体的转录活性。Mettl17可以与雌激素受体α和β结合,作为共激活因子,促进雌激素受体介导的基因表达。Mettl17的敲低会降低雌激素受体α和β的转录活性,抑制乳腺癌细胞的生长[2]。
Mettl17在自身免疫性疾病中也发挥重要作用。Mettl17的表达上调会抑制炎症反应,促进M1巨噬细胞的极化。Mettl17通过调节STAT1的RNA甲基化,抑制STAT1的mRNA和蛋白质的稳定性,从而抑制炎症反应和M1巨噬细胞的极化[3]。
Mettl17的表达与多种癌症的预后相关。Mettl17在多种癌症中的表达上调,与患者的预后不良相关。Mettl17可以作为新的预后标记物和潜在的治疗靶点,为癌症的治疗和预防提供新的思路和策略[5]。
Mettl17还参与调控胚胎干细胞的分化和多能性。Mettl17通过修饰线粒体RNA,影响线粒体蛋白的翻译,进而影响胚胎干细胞的能量代谢和细胞增殖[4]。
Mettl17的表达受到多种因素的影响。例如,短期的口服暴露预防疗法(PrEP)可以上调METTL17的表达,影响细胞的功能和生物学过程[6]。此外,肝缺血再灌注损伤也可以上调METTL17的表达,影响细胞的功能和生物学过程[7]。
综上所述,Mettl17是一种重要的线粒体蛋白,参与调控线粒体的功能,包括基因表达、能量代谢和细胞凋亡。Mettl17在多种疾病中发挥重要作用,包括结直肠癌、乳腺癌、自身免疫性疾病和癌症。Mettl17的研究有助于深入理解线粒体功能的调控机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Li, Hao, Yu, Kailun, Hu, Huilong, Zhang, Jianhui, Zhang, Yongyou. 2024. METTL17 coordinates ferroptosis and tumorigenesis by regulating mitochondrial translation in colorectal cancer. In Redox biology, 71, 103087. doi:10.1016/j.redox.2024.103087. https://pubmed.ncbi.nlm.nih.gov/38377789/
2. Du, Peiyun, Yuan, Bin, Cao, Jia, Cheng, Long, Ye, Qinong. 2015. Methyltransferase-like 17 physically and functionally interacts with estrogen receptors. In IUBMB life, 67, 861-8. doi:10.1002/iub.1444. https://pubmed.ncbi.nlm.nih.gov/26488768/
3. Lv, Jiang-Tao, Zhang, Ying-Ying, Tian, Shao-Qi, Liu, Jiang-Jun. . METTL17-Mediated Inhibition of M1 Macrophage Polarization Alleviates the Progression of Ankylosing Spondylitis. In Critical reviews in eukaryotic gene expression, 35, 87-95. doi:10.1615/CritRevEukaryotGeneExpr.2024057127. https://pubmed.ncbi.nlm.nih.gov/39957595/
4. Shi, Zhennan, Xu, Siyuan, Xing, Shenghui, Hu, Zeping, Lan, Fei. 2019. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes. In FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 33, 13040-13050. doi:10.1096/fj.201901331R. https://pubmed.ncbi.nlm.nih.gov/31487196/
5. Ding, Yezhou, Feng, Mingyang, Chi, Wanqing, Wang, Xiaolin, Wang, Hui. 2025. The expression landscape and clinical significance of methyltransferase-like 17 in human cancer and hepatocellular carcinoma: a pan-cancer analysis using multiple databases. In Cancer cell international, 25, 15. doi:10.1186/s12935-024-03616-7. https://pubmed.ncbi.nlm.nih.gov/39825447/
6. Petkov, Stefan, Herrera, Carolina, Else, Laura, Fox, Julie, Chiodi, Francesca. 2022. Short-term oral pre-exposure prophylaxis against HIV-1 modulates the transcriptome of foreskin tissue in young men in Africa. In Frontiers in immunology, 13, 1009978. doi:10.3389/fimmu.2022.1009978. https://pubmed.ncbi.nlm.nih.gov/36479111/
7. Hua, Yongliang, Li, Xinglong, Yin, Bing, Meng, Zhanzhi, Ma, Yong. 2024. Genome-wide analysis of alternative splicing differences in hepatic ischemia reperfusion injury. In Scientific reports, 14, 31349. doi:10.1038/s41598-024-82846-1. https://pubmed.ncbi.nlm.nih.gov/39732885/