Acot11,也称为酰基辅酶A硫酯酶11,是酰基辅酶A硫酯酶基因家族的成员。酰基辅酶A硫酯酶基因家族是一组催化脂肪酸酰基辅酶A硫酯水解为游离脂肪酸和辅酶A的酶。脂肪酸酰基辅酶A硫酯酶在脂肪酸代谢中发挥着重要作用,参与脂肪酸的合成、分解和运输等过程。此外,它们还在细胞信号传导、细胞生长和分化等生物学过程中发挥作用。
Acot11在多种生物学过程中发挥重要作用。例如,Acot11在脂肪组织中表达丰富,参与脂肪细胞的能量代谢和脂肪积累。Acot11的缺失会导致脂肪细胞中脂肪酸的积累和能量代谢的紊乱,从而影响脂肪细胞的生长和分化。此外,Acot11还在神经系统中表达,参与神经元的能量代谢和神经信号传导。Acot11的缺失会影响神经元的生长和功能,从而导致神经退行性疾病的发生。
Acot11在多种疾病中发挥重要作用,包括癌症、心血管疾病和神经退行性疾病等。例如,Acot11在肺癌细胞中高表达,并且与肺癌的进展和预后不良相关。Acot11的敲低可以抑制肺癌细胞的增殖、迁移和侵袭,并促进细胞凋亡和细胞周期停滞。此外,Acot11还可以与肺癌中的致癌基因CSE1L结合,推测CSE1L可能是Acot11的潜在靶点[1]。在结直肠癌中,Acot11的表达下调,并且与结直肠癌的早期检测和预后相关。Acot11和其他几个基因(如CLCA1和SELENBP1)的下调可能在结直肠癌的发生发展中发挥抑制作用[2]。在食管鳞状细胞癌中,Acot11是四种与脂质代谢相关的预后基因之一,可以作为预测患者预后的生物标志物[3]。在肾细胞癌中,Acot11的表达下调,并且具有诊断和预后价值[4]。在早期肺鳞状细胞癌中,Acot11是九个与脂肪酸代谢相关的预后基因之一,可以作为预测患者预后的生物标志物,并指导个性化治疗[5]。在静脉曲张中,Acot11的表达下调,并且与静脉曲张的发病机制相关[6]。在阿尔茨海默病中,Acot11与已知致病基因APOE存在显著的表观遗传相互作用,可能影响阿尔茨海默病的发生发展[7]。在肺癌中,内质网应激与酰基辅酶A硫酯酶的表达相关,Acot11的表达下调可能影响肺癌的发生发展[8]。
综上所述,Acot11是一种重要的酰基辅酶A硫酯酶,参与脂肪酸代谢和多种生物学过程。Acot11在多种疾病中发挥重要作用,包括癌症、心血管疾病和神经退行性疾病等。Acot11的研究有助于深入理解酰基辅酶A硫酯酶的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Liang, Chaoyang, Wang, Xiaowei, Zhang, Zhenrong, Zhong, Dingrong, Liu, Deruo. . ACOT11 promotes cell proliferation, migration and invasion in lung adenocarcinoma. In Translational lung cancer research, 9, 1885-1903. doi:10.21037/tlcr-19-509. https://pubmed.ncbi.nlm.nih.gov/33209610/
2. Asghari Alashti, Fariborz, Goliaei, Bahram, Minuchehr, Zarrin. 2022. Analyzing large scale gene expression data in colorectal cancer reveals important clues; CLCA1 and SELENBP1 downregulated in CRC not in normal and not in adenoma. In American journal of cancer research, 12, 371-380. doi:. https://pubmed.ncbi.nlm.nih.gov/35141024/
3. Shen, Guo-Yi, Yang, Peng-Jie, Zhang, Wen-Shan, Zhang, Yi, Han, Bater. 2023. Identification of a Prognostic Gene Signature Based on Lipid Metabolism-Related Genes in Esophageal Squamous Cell Carcinoma. In Pharmacogenomics and personalized medicine, 16, 959-972. doi:10.2147/PGPM.S430786. https://pubmed.ncbi.nlm.nih.gov/38023824/
4. Xu, Chao-Liang, Chen, Lei, Li, Deng, Sha, Ming-Lei, Shao, Yi. 2020. Acyl-CoA Thioesterase 8 and 11 as Novel Biomarkers for Clear Cell Renal Cell Carcinoma. In Frontiers in genetics, 11, 594969. doi:10.3389/fgene.2020.594969. https://pubmed.ncbi.nlm.nih.gov/33362855/
5. Xu, Juqing, Yu, Maoran, Fan, Weifei, Feng, Jifeng. 2024. A novel gene signature related to fatty acid metabolism predicts prognosis, immune landscape, and drug sensitivity in early-stage lung squamous cell carcinoma. In Translational cancer research, 13, 525-541. doi:10.21037/tcr-23-1640. https://pubmed.ncbi.nlm.nih.gov/38482436/
6. Lee, Meng-Lin, Liang, Chao, Chuang, Cheng-Hsun, Liao, Kuang-Wen, Huang, Hsien-Da. 2022. A genome-wide association study for varicose veins. In Phlebology, 37, 267-278. doi:10.1177/02683555211069248. https://pubmed.ncbi.nlm.nih.gov/35099328/
7. Lundberg, Mischa, Sng, Letitia M F, Szul, Piotr, Bauer, Denis C, Twine, Natalie A. 2023. Novel Alzheimer's disease genes and epistasis identified using machine learning GWAS platform. In Scientific reports, 13, 17662. doi:10.1038/s41598-023-44378-y. https://pubmed.ncbi.nlm.nih.gov/37848535/
8. Liu, Kuan-Ting, Yeh, I-Jeng, Chou, Shih-Kai, Yen, Meng-Chi, Kuo, Po-Lin. 2018. Regulatory mechanism of fatty acid‑CoA metabolic enzymes under endoplasmic reticulum stress in lung cancer. In Oncology reports, 40, 2674-2682. doi:10.3892/or.2018.6664. https://pubmed.ncbi.nlm.nih.gov/30132556/