推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Rsph4aem1flox/Cya 条件性基因敲除小鼠
复苏/繁育服务
产品名称:
Rsph4a-flox
产品编号:
S-CKO-05661
品系背景:
C57BL/6JCya
小鼠资源库
* 使用本品系发表的文献需注明:Rsph4a-flox mice (Strain S-CKO-05661) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Rsph4aem1flox/Cya
品系编号
CKOCMP-212892-Rsph4a-B6J-VA
产品编号
S-CKO-05661
基因名
Rsph4a
品系背景
C57BL/6JCya
基因别称
Rshl3;A230081C05
NCBI号
修饰方式
条件性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
在研小鼠
环境标准
SPF
供应地区
中国
品系详情
Rsph4a位于小鼠的10号染色体,采用基因编辑技术,通过高通量电转受精卵方式,获得Rsph4a基因条件性敲除小鼠,性成熟后取精子冻存。
Rsph4a-flox小鼠模型由赛业生物(Cyagen)采用基因编辑技术构建的条件性基因敲除小鼠。Rsph4a基因位于小鼠10号染色体上,由6个外显子组成,其中ATG起始密码子在1号外显子,TAA终止密码子在6号外显子。条件性敲除区域(cKO区域)位于第2号到3号外显子,包含约2184个碱基对的编码序列。删除该区域会导致小鼠Rsph4a基因功能的丧失。Rsph4a-flox小鼠模型的构建过程包括将核糖核蛋白(RNP)和靶向载体共同注入受精卵。随后,对出生的小鼠进行PCR和测序分析进行基因型鉴定。此外,该模型可用于研究Rsph4a基因在小鼠体内的功能,并探究其在生物过程中的作用。
基因研究概述
Rsph4a,即RSPH4A基因,编码的是一种重要的细胞器——鞭毛和纤毛中的放射状突起头蛋白4同源物A。鞭毛和纤毛是动植物细胞中用于运动和感觉的细胞器,它们的正常功能对于维持人体的多种生理过程至关重要。RSPH4A基因的突变与原发性纤毛运动障碍(PCD)有关,这是一种罕见的遗传性纤毛疾病,患者通常会出现反复的耳鼻喉和肺部感染,以及不育等问题[1][2][3][4][5][6][7][8]。
RSPH4A基因编码的蛋白质在鞭毛和纤毛的放射状突起头中发挥作用。放射状突起是鞭毛和纤毛中央微管对周围微管对运动的关键调节因子。RSPH4A的突变会影响这种调节功能,导致纤毛运动异常,从而引发PCD。在PCD患者中,RSPH4A基因的突变会导致纤毛的运动模式异常,影响其清除粘液和细菌等颗粒的能力,从而导致反复的感染[1]。
在中国儿童PCD患者中,最常见的突变基因是DNAH11,其次是DNAH5、CCDC39、DNAH1和CCNO。此外,RSPH4A、CCDC40、LRRC6、SPAG1、ARMC4、CCDC114和DNAH14等基因也出现了突变。值得注意的是,在PCD患者中,DNAH1基因的突变与后感染性细支气管炎闭塞症(PIBO)的发生有关[2]。
在土耳其白种人PCD患者中,与疾病相关的变异出现在CCDC39、CCDC40、CCDC151、DNAAF2、DNAAF4、DNAH11、HYDIN和RSPH4A等8个不同的基因中。其中,CCDC151、DNAH11和DNAAF2基因的突变频率较高。此外,还发现了p.R482fs*12、p.E216*、p.I317*、p.L318P、p.R1865*、p.N1505D和p.L1167P等新型变异[4]。
在波多黎各,PCD的遗传变异主要与RSPH4A基因的突变有关,尤其是RSPH4A (c.921+3_6delAAGT)基因的突变。这种突变在没有后侧性缺陷的情况下导致PCD。此外,ZMYND10基因的突变也与PCD有关[5]。
RSPH4A基因的突变会影响纤毛的运动模式,导致反复的耳鼻喉和肺部感染,以及不育等问题。RSPH4A基因的突变会导致纤毛的运动模式异常,影响其清除粘液和细菌等颗粒的能力,从而导致反复的感染。在PCD患者中,RSPH4A基因的突变会导致纤毛的运动模式异常,影响其清除粘液和细菌等颗粒的能力,从而导致反复的感染[1][2][3][4][5][6][7][8]。
参考文献:
1. De Jesús-Rojas, Wilfredo, Meléndez-Montañez, Jesús, Muñiz-Hernández, José, Ramos-Benitez, Marcos J, Mosquera, Ricardo A. 2023. The RSPH4A Gene in Primary Ciliary Dyskinesia. In International journal of molecular sciences, 24, . doi:10.3390/ijms24031936. https://pubmed.ncbi.nlm.nih.gov/36768259/
2. Guan, Yuhong, Yang, Haiming, Yao, Xingfeng, Ge, Wentong, Ni, Xin. 2021. Clinical and Genetic Spectrum of Children With Primary Ciliary Dyskinesia in China. In Chest, 159, 1768-1781. doi:10.1016/j.chest.2021.02.006. https://pubmed.ncbi.nlm.nih.gov/33577779/
3. Shen, Chenling, Shen, Yilin, Huang, Weiyi, Xiang, Mingliang, Ye, Bin. 2024. A novel homozygous RSPH4A variant in a family with primary ciliary dyskinesia and literature review. In Frontiers in genetics, 15, 1364476. doi:10.3389/fgene.2024.1364476. https://pubmed.ncbi.nlm.nih.gov/38818043/
4. Demir Eksi, Durkadin, Yilmaz, Elanur, Basaran, A Erdem, Bingol, Aysen, Alper, Ozgul M. 2022. Novel Gene Variants Associated with Primary Ciliary Dyskinesia. In Indian journal of pediatrics, 89, 682-691. doi:10.1007/s12098-022-04098-z. https://pubmed.ncbi.nlm.nih.gov/35239159/
5. De Jesús-Rojas, Wilfredo, Muñiz-Hernández, José, Alvarado-Huerta, Francisco, Santos-López, Arnaldo J, Mosquera, Ricardo A. 2022. The Genetics of Primary Ciliary Dyskinesia in Puerto Rico. In Diagnostics (Basel, Switzerland), 12, . doi:10.3390/diagnostics12051127. https://pubmed.ncbi.nlm.nih.gov/35626283/
6. Yoke, Hiroshi, Ueno, Hironori, Narita, Akihiro, Hamada, Hiroshi, Shinohara, Kyosuke. 2020. Rsph4a is essential for the triplet radial spoke head assembly of the mouse motile cilia. In PLoS genetics, 16, e1008664. doi:10.1371/journal.pgen.1008664. https://pubmed.ncbi.nlm.nih.gov/32203505/
7. De Jesús-Rojas, Wilfredo, Reyes-De Jesús, Dalilah, Mosquera, Ricardo A. 2021. Primary Ciliary Dyskinesia Diagnostic Challenges: Understanding the Clinical Phenotype of the Puerto Rican RSPH4A Founder Mutation. In Diagnostics (Basel, Switzerland), 11, . doi:10.3390/diagnostics11020281. https://pubmed.ncbi.nlm.nih.gov/33670432/
8. Tanaka, Yuko, Fujisawa, Tomoyuki, Yazawa, Shusuke, Suzuki, Tetsuro, Suda, Takafumi. 2024. Obesity impairs ciliary function and mucociliary clearance in the murine airway epithelium. In American journal of physiology. Lung cellular and molecular physiology, 327, L406-L414. doi:10.1152/ajplung.00114.2024. https://pubmed.ncbi.nlm.nih.gov/39104315/