基因Ddx46属于DEAD-box RNA解旋酶家族,是一类ATP依赖的RNA解旋酶,在RNA的转录、剪接和翻译等过程中发挥着重要作用。DEAD-box RNA解旋酶家族成员参与调控RNA的二级结构,影响RNA的稳定性和功能,进而影响基因表达和生物学过程。Ddx46在多种疾病中发挥重要作用,包括病毒感染、肿瘤发生发展等。
在病毒感染方面,Ddx46通过其DEAD解旋酶结构域与ALKBH5结合,招募ALKBH5至病毒感染后的抗病毒转录本上,去除其N6-甲基腺苷(m6A)修饰,导致这些转录本在细胞核内滞留,从而抑制其翻译和干扰素的产生,抑制抗病毒先天免疫反应[1]。此外,DDX46还参与RNA的动态结构重塑,影响MGMT mRNA的转运和表达,从而影响肿瘤细胞对化疗药物的敏感性[2]。
在肿瘤发生发展方面,Ddx46在多种肿瘤组织中表达上调,包括结直肠癌、胃癌、乳腺癌、胰腺癌和食管鳞状细胞癌等。在结直肠癌中,Ddx46表达上调,沉默Ddx46的表达可以抑制结直肠癌细胞增殖并诱导凋亡[3]。在胃癌中,Ddx46表达上调,沉默Ddx46的表达可以抑制胃癌细胞增殖和侵袭,并抑制Akt/GSK-3β/β-catenin信号通路[4]。在乳腺癌中,Ddx46表达上调,沉默Ddx46的表达可以抑制乳腺癌细胞增殖和侵袭[5]。在胰腺癌中,Ddx46表达上调,沉默Ddx46的表达可以抑制胰腺癌细胞增殖并增强其对抗癌药物吉西他滨的敏感性,其机制与JMJD6/CDK4信号通路相关[6]。在食管鳞状细胞癌中,Ddx46表达上调,沉默Ddx46的表达可以抑制食管鳞状细胞癌细胞增殖并诱导凋亡[7]。
除了在肿瘤发生发展中的作用,Ddx46还在胚胎发育中发挥重要作用。在斑马鱼中,Ddx46突变导致消化器官和脑的发育缺陷,其机制可能与Ddx46在剪接过程中的作用相关[8]。
综上所述,基因Ddx46在RNA代谢、病毒感染和肿瘤发生发展中发挥着重要作用。Ddx46的异常表达与多种疾病的发生发展密切相关,因此,Ddx46可能成为疾病诊断和治疗的重要靶点。
参考文献:
1. Zheng, Qingliang, Hou, Jin, Zhou, Ye, Li, Zhenyang, Cao, Xuetao. 2017. The RNA helicase DDX46 inhibits innate immunity by entrapping m6A-demethylated antiviral transcripts in the nucleus. In Nature immunology, 18, 1094-1103. doi:10.1038/ni.3830. https://pubmed.ncbi.nlm.nih.gov/28846086/
2. Liao, Xinyi, Zhang, Shuxia, Li, Xincheng, Song, Libing, Li, Jun. 2024. Dynamic structural remodeling of LINC01956 enhances temozolomide resistance in MGMT-methylated glioblastoma. In Science translational medicine, 16, eado1573. doi:10.1126/scitranslmed.ado1573. https://pubmed.ncbi.nlm.nih.gov/39356744/
3. Li, Ming, Ma, Yanchao, Huang, Pei, Liu, Fenju, Cao, Jianping. 2015. Lentiviral DDX46 knockdown inhibits growth and induces apoptosis in human colorectal cancer cells. In Gene, 560, 237-44. doi:10.1016/j.gene.2015.02.020. https://pubmed.ncbi.nlm.nih.gov/25680556/
4. Chen, Lihong, Xu, Min, Zhong, Wenting, Hu, Yinghui, Wang, Guanghui. 2020. Knockdown of DDX46 suppresses the proliferation and invasion of gastric cancer through inactivating Akt/GSK-3β/β-catenin pathway. In Experimental cell research, 399, 112448. doi:10.1016/j.yexcr.2020.112448. https://pubmed.ncbi.nlm.nih.gov/33347858/
5. Ma, Zhongliang, Song, Jinlian, Hua, Yanan, Wang, Haibo, Hou, Lin. 2022. The role of DDX46 in breast cancer proliferation and invasiveness: A potential therapeutic target. In Cell biology international, 47, 283-291. doi:10.1002/cbin.11930. https://pubmed.ncbi.nlm.nih.gov/36200534/
6. Bonaventure, Boris, Goujon, Caroline. . DExH/D-box helicases at the frontline of intrinsic and innate immunity against viral infections. In The Journal of general virology, 103, . doi:10.1099/jgv.0.001766. https://pubmed.ncbi.nlm.nih.gov/36006669/
7. Yang, Guang, Wang, Yun, Wang, Kairui, Liu, Xinjia, Yang, Jing. 2024. Oncogenic DDX46 promotes pancreatic cancer development and gemcitabine resistance by facilitating the JMJD6/CDK4 signaling pathway. In Neoplasma, 71, 231-242. doi:10.4149/neo_2024_230904N469. https://pubmed.ncbi.nlm.nih.gov/38764294/
8. Lin, Quan, Jin, Hong-Juan, Zhang, Duo, Gao, Ling. 2020. DDX46 silencing inhibits cell proliferation by activating apoptosis and autophagy in cutaneous squamous cell carcinoma. In Molecular medicine reports, 22, 4236-4242. doi:10.3892/mmr.2020.11509. https://pubmed.ncbi.nlm.nih.gov/33000271/