Nlrp1a,也称为NOD样受体1a,是一种重要的细胞内模式识别受体,属于NLR(Nucleotide-binding oligomerization domain-like receptors)家族。NLRs在先天免疫系统中发挥着重要作用,它们能够识别病原相关分子模式(PAMPs)和损伤相关分子模式(DAMPs),并激活炎症小体(inflammasome)复合物,进而引发细胞焦亡(pyroptosis)和炎症反应。Nlrp1a作为一种炎症小体传感器,在免疫应答和炎症反应中具有重要作用。
在多种疾病中,Nlrp1a的表达和功能与疾病的发生、发展和预后密切相关。例如,在动脉粥样硬化中,Nlrp1a通过NF-κB/IL-6信号通路介导巨噬细胞的炎症反应,促进动脉粥样硬化斑块的形成[1]。在糖尿病心肌病中,Nlrp1a通过下调lncRNA TINCR抑制焦亡和糖尿病心肌病的发生[2]。在结直肠癌中,Nlrp1a通过m6A修饰抑制SOX4 mRNA的表达,从而抑制肿瘤的转移[3]。此外,Nlrp1a的基因多态性与中国儿童Wilms瘤的易感性降低相关[4]。
在神经母细胞瘤(NB)中,Nlrp1a表达显著上调,与不良预后有强相关性。Nlrp1a通过m6A-YTHDF1依赖机制抑制YWHAH表达,激活PI3K/AKT信号通路,促进NB细胞活性[5]。Nlrp1a通过促进PRC2和KDM5B在二价结构域上的结合,影响组蛋白修饰,进而调控二价结构基因的表达[6]。
Nlrp1a不仅在RNA修饰中发挥作用,还具有独立的染色质调控功能。Nlrp1a可以与H3K27me3结合,招募KDM6B诱导H3K27me3的去甲基化,从而影响基因表达和干细胞的多能性维持[7]。此外,Nlrp1a还可以通过下调lncRNA XIST的表达抑制结直肠癌的增殖和转移[8]。
综上所述,Nlrp1a是一种重要的RNA甲基转移酶,参与调控RNA的稳定性和功能,影响基因表达和生物学过程。Nlrp1a在多种疾病中发挥重要作用,包括动脉粥样硬化、糖尿病心肌病、结直肠癌和Wilms瘤。此外,Nlrp1a还具有独立的染色质调控功能,影响基因表达和干细胞的多能性维持。Nlrp1a的研究有助于深入理解RNA表观遗传修饰的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Mazzone, Ryan J, Winsor, Nathaniel J, Li, Lu Yi, Mogridge, Jeremy, Girardin, Stephen E. 2024. NLRP1B allele 2 does not respond to Val-boro-Pro (VbP) in intestinal epithelial cells. In Microbes and infection, 26, 105398. doi:10.1016/j.micinf.2024.105398. https://pubmed.ncbi.nlm.nih.gov/39047896/
2. Bazrafkan, Mahshid, Nikmehr, Banafsheh, Shahverdi, Abdolhossein, Beyer, Cordian, Hassanzadeh, Gholamreza. 2017. Lipid Peroxidation and Its Role in the Expression of NLRP1a and NLRP3 Genes in Testicular Tissue of Male Rats: a Model of Spinal Cord Injury. In Iranian biomedical journal, 22, 151-9. doi:. https://pubmed.ncbi.nlm.nih.gov/29034676/
3. Cavailles, Pierre, Flori, Pierre, Papapietro, Olivier, Fournié, Gilbert J, Cesbron-Delauw, Marie France. 2014. A highly conserved Toxo1 haplotype directs resistance to toxoplasmosis and its associated caspase-1 dependent killing of parasite and host macrophage. In PLoS pathogens, 10, e1004005. doi:10.1371/journal.ppat.1004005. https://pubmed.ncbi.nlm.nih.gov/24699513/
4. Tye, Hazel, Yu, Chien-Hsiung, Simms, Lisa A, Radford-Smith, Graham L, Masters, Seth L. 2018. NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease. In Nature communications, 9, 3728. doi:10.1038/s41467-018-06125-0. https://pubmed.ncbi.nlm.nih.gov/30214011/
5. Znalesniak, Eva B, Fu, Ting, Salm, Franz, Händel, Ulrike, Hoffmann, Werner. 2017. Transcriptional Responses in the Murine Spleen after Toxoplasma gondii Infection: Inflammasome and Mucus-Associated Genes. In International journal of molecular sciences, 18, . doi:10.3390/ijms18061245. https://pubmed.ncbi.nlm.nih.gov/28604600/
6. Im, Seung-Soon, Yousef, Leyla, Blaschitz, Christoph, Raffatellu, Manuela, Osborne, Timothy F. . Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. In Cell metabolism, 13, 540-9. doi:10.1016/j.cmet.2011.04.001. https://pubmed.ncbi.nlm.nih.gov/21531336/
7. Zhu, Shengyun, Shi, Peipei, Lv, Chaoran, Zeng, Lingyu, Xu, Kailin. 2018. Loss of NLRP3 Function Alleviates Murine Hepatic Graft-versus-Host Disease. In Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 24, 2409-2417. doi:10.1016/j.bbmt.2018.07.026. https://pubmed.ncbi.nlm.nih.gov/30053645/
8. de Jong, Tristan V, Kim, Panjun, Guryev, Victor, Redei, Eva E, Chen, Hao. 2021. Whole genome sequencing of nearly isogenic WMI and WLI inbred rats identifies genes potentially involved in depression and stress reactivity. In Scientific reports, 11, 14774. doi:10.1038/s41598-021-92993-4. https://pubmed.ncbi.nlm.nih.gov/34285244/