ADM,即肾上腺髓质素(Adrenomedullin),是一种由52个氨基酸组成的肽类激素,主要由血管内皮细胞和平滑肌细胞产生。ADM在生理和病理条件下发挥着广泛的生物学功能,包括调节血管张力、改善血液循环、参与炎症反应、调节细胞增殖和凋亡等。ADM及其前体物质MR-proADM在心血管疾病、糖尿病、肾脏疾病等多种疾病的发生发展中起着重要作用。
在胰腺癌的发生发展中,ADM同样扮演着重要角色。研究表明,KRAS基因突变是胰腺癌发生的关键因素之一。在胰腺炎背景下,KRAS基因突变会加速肿瘤的发展[1]。炎症反应结束后,胰腺上皮细胞会表现出持久的适应性反应,这种适应性反应与持续的转录和表观遗传重编程相关,使得在后续的炎症事件中,腺泡-导管转化(ADM)得以重新激活,从而限制组织损伤[1]。此外,组蛋白H4乙酰化水平升高和乙酰辅酶A(Acetyl-CoA)代谢的改变也与胰腺癌的发生发展密切相关[2]。乙酰辅酶A的丰富性调节全球组蛋白乙酰化,而乙酰辅酶A在甲羟戊酸途径中的使用支持腺泡-导管转化(ADM)[2]。
在胰腺炎和胰腺癌的早期阶段,miR-802的表达会被抑制,而miR-802的缺乏会与KRAS基因突变协同作用,促进ADM的形成[3]。此外,巨噬细胞在胰腺炎后的修复和再生过程中起着重要作用,M1型巨噬细胞在炎症阶段占主导地位,而M2型巨噬细胞在修复和再生阶段占主导地位[6]。Sox4基因在ADM和胰腺癌的发生发展中起着重要作用,它不仅抑制腺泡细胞去分化,还促进腺泡衍生的细胞表型[7]。
研究表明,ADM与2型糖尿病患者下肢截肢风险增加相关[4]。在结核病患者中,ADM表达显著升高,这可能是区分活动性肺结核、潜伏性结核感染和健康人群的新标志物[5]。此外,ADM基因表达与人类胶质母细胞瘤的发生发展密切相关[8]。
综上所述,ADM在胰腺癌、心血管疾病、糖尿病、肾脏疾病、结核病和胶质母细胞瘤等多种疾病的发生发展中起着重要作用。ADM的生物学功能涉及血管张力调节、炎症反应、细胞增殖和凋亡等多个方面。深入研究ADM的生物学功能和作用机制,有助于揭示疾病的发生发展机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Del Poggetto, Edoardo, Ho, I-Lin, Balestrieri, Chiara, Natoli, Gioacchino, Viale, Andrea. 2021. Epithelial memory of inflammation limits tissue damage while promoting pancreatic tumorigenesis. In Science (New York, N.Y.), 373, eabj0486. doi:10.1126/science.abj0486. https://pubmed.ncbi.nlm.nih.gov/34529467/
2. Carrer, Alessandro, Trefely, Sophie, Zhao, Steven, Stanger, Ben Z, Wellen, Kathryn E. 2019. Acetyl-CoA Metabolism Supports Multistep Pancreatic Tumorigenesis. In Cancer discovery, 9, 416-435. doi:10.1158/2159-8290.CD-18-0567. https://pubmed.ncbi.nlm.nih.gov/30626590/
3. Ge, Wenjie, Goga, Algera, He, Yuliang, Schwank, Gerald, Stoffel, Markus. 2021. miR-802 Suppresses Acinar-to-Ductal Reprogramming During Early Pancreatitis and Pancreatic Carcinogenesis. In Gastroenterology, 162, 269-284. doi:10.1053/j.gastro.2021.09.029. https://pubmed.ncbi.nlm.nih.gov/34547282/
4. Potier, Louis, Mohammedi, Kamel, Saulnier, Pierre-Jean, Roussel, Ronan, Velho, Gilberto. . Plasma Adrenomedullin, Allelic Variations in the ADM Gene, and Risk for Lower-Limb Amputation in People With Type 2 Diabetes. In Diabetes care, 45, 1631-1639. doi:10.2337/dc21-2638. https://pubmed.ncbi.nlm.nih.gov/35583678/
5. Xu, Yuzhong, Tan, Yaoju, Zhang, Xianyi, Chen, Xinchun, Zhu, Jialou. 2022. Comprehensive identification of immuno-related transcriptional signature for active pulmonary tuberculosis by integrated analysis of array and single cell RNA-seq. In The Journal of infection, 85, 534-544. doi:10.1016/j.jinf.2022.08.017. https://pubmed.ncbi.nlm.nih.gov/36007657/
6. Wu, Jinghua, Zhang, Li, Shi, Juanjuan, Lu, Ping, Xue, Jing. 2020. Macrophage phenotypic switch orchestrates the inflammation and repair/regeneration following acute pancreatitis injury. In EBioMedicine, 58, 102920. doi:10.1016/j.ebiom.2020.102920. https://pubmed.ncbi.nlm.nih.gov/32739869/
7. Baldan, Jonathan, Camacho-Roda, Juan, Ballester, Marta, Rooman, Ilse, Arnes, Luis. 2024. Resolution of Acinar Dedifferentiation Regulates Tissue Remodeling in Pancreatic Injury and Cancer Initiation. In Gastroenterology, 167, 718-732.e18. doi:10.1053/j.gastro.2024.04.031. https://pubmed.ncbi.nlm.nih.gov/38729450/
8. Lu, Chih-Hao, Wei, Sung-Tai, Liu, Jia-Jun, Yu, Chin-Sheng, Chang, Sunny Li-Yun. 2022. Recognition of a Novel Gene Signature for Human Glioblastoma. In International journal of molecular sciences, 23, . doi:10.3390/ijms23084157. https://pubmed.ncbi.nlm.nih.gov/35456975/