推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Aatkem1flox/Cya 条件性基因敲除小鼠
复苏/繁育服务
产品名称:
Aatk-flox
产品编号:
S-CKO-00930
品系背景:
C57BL/6JCya
小鼠资源库
* 使用本品系发表的文献需注明:Aatk-flox mice (Strain S-CKO-00930) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Aatkem1flox/Cya
品系编号
CKOCMP-11302-Aatk-B6J-VA
产品编号
S-CKO-00930
基因名
Aatk
品系背景
C57BL/6JCya
基因别称
AATYK;aatyk1;mKIAA0641
NCBI号
修饰方式
条件性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:1197518 Mice homozygous for a knock-out allele exhibit decreased brain size, longer axons and fewer neurites.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
在研小鼠
环境标准
SPF
供应地区
中国
品系详情
Aatk位于小鼠的11号染色体,采用基因编辑技术,通过高通量电转受精卵方式,获得Aatk基因条件性敲除小鼠,性成熟后取精子冻存。
Aatk-flox小鼠是由赛业生物(Cyagen)采用基因编辑技术构建的条件性敲除小鼠。Aatk基因位于小鼠11号染色体上,由14个外显子组成,其中ATG起始密码子在1号外显子,TGA终止密码子在14号外显子。条件性敲除区域(cKO区域)位于3号外显子,包含约648个碱基对的编码序列。删除该区域会导致小鼠Aatk基因功能的丧失。Aatk-flox小鼠模型的构建过程包括将基因编辑技术生成的核糖核蛋白(RNP)和靶向载体共同注入受精卵。随后,对出生的小鼠进行PCR和测序分析进行基因型鉴定。携带敲除等位基因的小鼠表现出脑部体积减小、轴突变长和神经突起减少等特征。此外,小鼠模型可用于研究Aatk基因在小鼠体内的功能。
基因研究概述
AATK,也称为凋亡相关酪氨酸激酶,是一种重要的丝氨酸/苏氨酸激酶。AATK在多种生物学过程中发挥作用,包括细胞凋亡、细胞周期调控和神经发育。AATK通过磷酸化多种底物,如TP53、Cyclin D1和WEE1,影响细胞增殖、分化和凋亡。AATK的表达和活性受到多种因素的调控,包括miRNA、circRNA和DNA甲基化。
AATK在多种疾病中发挥重要作用,包括糖尿病、智力障碍、癌症和勃起功能障碍。在糖尿病中,AATK表达下调,导致β细胞增殖减少和凋亡增加,从而加剧糖尿病的发生和发展[1]。在智力障碍中,AATK是候选基因之一,可能与智力障碍的发病机制有关[2]。在癌症中,AATK表达下调,导致细胞增殖增加和凋亡减少,从而促进癌症的发生和发展[3]。在勃起功能障碍中,AATK表达下调,导致阴茎海绵体细胞增殖减少和凋亡增加,从而加剧勃起功能障碍的发生和发展[4]。
AATK的研究有助于深入理解细胞凋亡、细胞周期调控和神经发育的分子机制,为糖尿病、智力障碍、癌症和勃起功能障碍的治疗和预防提供新的思路和策略。
AATK的生物学功能和调控机制研究取得了一些进展。研究发现,AATK的磷酸化活性与其底物结合能力密切相关。AATK通过磷酸化TP53,抑制其转录活性,从而抑制细胞凋亡[5]。AATK通过磷酸化Cyclin D1和WEE1,抑制细胞周期进程,从而抑制细胞增殖[6]。AATK的表达和活性受到多种因素的调控,包括miRNA、circRNA和DNA甲基化。miR-338-3p是一种内含子miRNA,由AATK基因编码。miR-338-3p可以靶向AATK mRNA,抑制AATK的表达,从而抑制细胞增殖和凋亡[7]。circPTK2是一种circRNA,可以竞争性结合miR-196a-3p,抑制miR-196a-3p对AATK的抑制作用,从而抑制细胞增殖和凋亡[8]。
综上所述,AATK是一种重要的丝氨酸/苏氨酸激酶,参与调控细胞凋亡、细胞周期调控和神经发育。AATK的表达和活性受到多种因素的调控,包括miRNA、circRNA和DNA甲基化。AATK在多种疾病中发挥重要作用,包括糖尿病、智力障碍、癌症和勃起功能障碍。AATK的研究有助于深入理解细胞凋亡、细胞周期调控和神经发育的分子机制,为糖尿病、智力障碍、癌症和勃起功能障碍的治疗和预防提供新的思路和策略。
参考文献:
1. Jacovetti, Cécile, Jimenez, Veronica, Ayuso, Eduard, Bosch, Fatima, Regazzi, Romano. 2015. Contribution of Intronic miR-338-3p and Its Hosting Gene AATK to Compensatory β-Cell Mass Expansion. In Molecular endocrinology (Baltimore, Md.), 29, 693-702. doi:10.1210/me.2014-1299. https://pubmed.ncbi.nlm.nih.gov/25751313/
2. Al-Kasbi, Ghalia, Al-Murshedi, Fathiya, Al-Kindi, Adila, Al-Yahyaee, Said, Al-Maawali, Almundher. 2022. The diagnostic yield, candidate genes, and pitfalls for a genetic study of intellectual disability in 118 middle eastern families. In Scientific reports, 12, 18862. doi:10.1038/s41598-022-22036-z. https://pubmed.ncbi.nlm.nih.gov/36344539/
3. Kim, Jae Heon, Yang, Hee Jo, Park, Suyeon, Lee, Hong Jun, Song, Yun Seob. 2023. Differential Gene Expression in the Penile Cavernosum of Streptozotocin-Induced Diabetic Rats. In International neurourology journal, 27, 234-242. doi:10.5213/inj.2346074.037. https://pubmed.ncbi.nlm.nih.gov/38171323/
4. Haag, Tanja, Herkt, Christina E, Walesch, Sara K, Richter, Antje M, Dammann, Reinhard H. . The apoptosis associated tyrosine kinase gene is frequently hypermethylated in human cancer and is regulated by epigenetic mechanisms. In Genes & cancer, 5, 365-74. doi:. https://pubmed.ncbi.nlm.nih.gov/25352953/
5. Woods, Michelle L, Weiss, Astrid, Sokol, Anna M, Schermuly, Ralph T, Dammann, Reinhard H. 2022. Epigenetically silenced apoptosis-associated tyrosine kinase (AATK) facilitates a decreased expression of Cyclin D1 and WEE1, phosphorylates TP53 and reduces cell proliferation in a kinase-dependent manner. In Cancer gene therapy, 29, 1975-1987. doi:10.1038/s41417-022-00513-x. https://pubmed.ncbi.nlm.nih.gov/35902728/
6. Kos, Aron, Olde Loohuis, Nikkie F M, Wieczorek, Martha L, Kolk, Sharon M, Aschrafi, Armaz. 2012. A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. In PloS one, 7, e31022. doi:10.1371/journal.pone.0031022. https://pubmed.ncbi.nlm.nih.gov/22363537/
7. Ding, Li-Yun, Hou, Ya-Chin, Kuo, I-Ying, Shan, Yan-Shen, Huang, Po-Hsien. 2020. Epigenetic silencing of AATK in acinar to ductal metaplasia in murine model of pancreatic cancer. In Clinical epigenetics, 12, 87. doi:10.1186/s13148-020-00878-6. https://pubmed.ncbi.nlm.nih.gov/32552862/
8. Zhu, Rui-Xia, Song, Chun-Hui, Yang, Jin-Shan, Li, Bao-Jian, Liu, Si-Hai. 2016. Downregulation of AATK mediates microRNA-558-induced resistance of A549 cells to radiotherapy. In Molecular medicine reports, 14, 2846-52. doi:10.3892/mmr.2016.5579. https://pubmed.ncbi.nlm.nih.gov/27485693/