推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Xylbem1flox/Cya 条件性基因敲除小鼠
复苏/繁育服务
产品名称:
Xylb-flox
产品编号:
S-CKO-00269
品系背景:
C57BL/6JCya
小鼠资源库
* 使用本品系发表的文献需注明:Xylb-flox mice (Strain S-CKO-00269) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Xylbem1flox/Cya
品系编号
CKOCMP-102448-Xylb-B6J-VA
产品编号
S-CKO-00269
基因名
Xylb
品系背景
C57BL/6JCya
基因别称
--
NCBI号
修饰方式
条件性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
在研小鼠
环境标准
SPF
供应地区
中国
品系详情
Xylb位于小鼠的9号染色体,采用基因编辑技术,通过高通量电转受精卵方式,获得Xylb基因条件性敲除小鼠,性成熟后取精子冻存。
赛业生物(Cyagen)构建的Xylb-flox小鼠模型是一种条件性基因敲除小鼠。Xylb基因位于小鼠9号染色体上,包含19个外显子,其中ATG起始密码子在1号外显子,TGA终止密码子在10号外显子。条件性敲除区域(cKO区域)位于3号外显子,包含约570个碱基对的编码序列。删除该区域会导致小鼠Xylb基因功能的丧失。Xylb-flox小鼠模型的构建过程包括将核糖核蛋白(RNP)和靶向载体共同注入受精卵。随后,对出生的小鼠进行PCR和测序分析进行基因型鉴定。该模型可用于研究Xylb基因在小鼠体内的功能。
基因研究概述
XylB基因编码的是一种重要的酶,在不同的生物体中具有不同的功能和活性。在Pseudomonas putida mt-2中,xylB基因编码的是苯甲醇脱氢酶,这是一种参与TOL途径中的酶,可以将苯甲醇转化为苯甲醛,从而参与芳香族化合物的代谢[1]。在Butyrivibrio fibrisolvens中,xylB基因编码的是一种双功能蛋白,具有β-D-木糖苷酶和α-L-阿拉伯糖苷酶活性,可以降解木聚糖和阿拉伯糖,参与植物细胞壁的降解[2]。在Corynebacterium glutamicum中,xylB基因编码的是木酮糖激酶,参与木酮糖的代谢,是一种重要的能量代谢途径[3]。在Aspergillus niger BCC14405中,xylB基因编码的是一种糖苷水解酶家族11的木聚糖酶,可以降解木聚糖,生成低聚木糖,具有益生元的作用[4]。
在Escherichia coli中,xylB基因编码的是木酮糖激酶,可以催化木酮糖的磷酸化反应,生成木酮糖-5-磷酸,参与木酮糖的代谢。此外,xylB基因还可以作为一种正选择载体,通过插入DNA片段来破坏xylB基因的表达,从而实现正选择的目的[5]。在人类中,XYLB基因编码的是一种类似于木酮糖激酶的蛋白,其功能尚未完全明确,可能与能量代谢相关[6]。
在Acinetobacter baylyi ADP1中,xylB基因编码的是一种类似于苯甲醇脱氢酶的酶,可以催化芳基醇的脱氢反应,参与芳基醇的代谢[7]。在Prunus salicina Lindl.中,PsARF/XYL基因编码的是一种α-L-阿拉伯糖苷酶/β-D-木糖苷酶,可以降解阿拉伯糖和木糖,参与植物细胞壁的降解[8]。
在Herbaspirillum seropedicae中,xylB基因编码的是一种NAD+-依赖性的D-木糖脱氢酶,参与D-木糖的代谢。此外,该菌还可以表达L-阿拉伯糖脱氢酶和一种新的代谢途径,用于D-木糖的代谢[9]。
综上所述,XylB基因在不同的生物体中具有不同的功能和活性,参与多种代谢途径,包括芳香族化合物的代谢、植物细胞壁的降解、木酮糖的代谢等。此外,XylB基因还可以作为一种正选择载体,用于DNA克隆实验。对XylB基因的研究有助于深入理解其功能和生物学意义,为相关领域的应用提供理论基础[1-10]。
参考文献:
1. Inouye, S, Nakazawa, A, Nakazawa, T. . Molecular cloning of TOL genes xylB and xylE in Escherichia coli. In Journal of bacteriology, 145, 1137-43. doi:. https://pubmed.ncbi.nlm.nih.gov/7009570/
2. Utt, E A, Eddy, C K, Keshav, K F, Ingram, L O. . Sequencing and expression of the Butyrivibrio fibrisolvens xylB gene encoding a novel bifunctional protein with beta-D-xylosidase and alpha-L-arabinofuranosidase activities. In Applied and environmental microbiology, 57, 1227-34. doi:. https://pubmed.ncbi.nlm.nih.gov/1905520/
3. Henke, Nadja A, Krahn, Irene, Wendisch, Volker F. 2021. Improved Plasmid-Based Inducible and Constitutive Gene Expression in Corynebacterium glutamicum. In Microorganisms, 9, . doi:10.3390/microorganisms9010204. https://pubmed.ncbi.nlm.nih.gov/33478126/
4. Aiewviriyasakul, Katesuda, Bunterngsook, Benjarat, Lekakarn, Hataikarn, Kanokratana, Pattanop, Champreda, Verawat. 2021. Biochemical characterization of xylanase GH11 isolated from Aspergillus niger BCC14405 (XylB) and its application in xylooligosaccharide production. In Biotechnology letters, 43, 2299-2310. doi:10.1007/s10529-021-03202-1. https://pubmed.ncbi.nlm.nih.gov/34718907/
5. Stevis, P E, Ho, N W. . A novel xylB-based positive selection vector. In Plasmid, 20, 92-5. doi:. https://pubmed.ncbi.nlm.nih.gov/2853882/
6. Tamari, M, Daigo, Y, Ishikawa, S, Nakamura, Y. . Genomic structure of a novel human gene (XYLB) on chromosome 3p22-->p21.3 encoding a xylulokinase-like protein. In Cytogenetics and cell genetics, 82, 101-4. doi:. https://pubmed.ncbi.nlm.nih.gov/9763671/
7. Sewell, G W, Utt, E A, Hespell, R B, Mackenzie, K F, Ingram, L O. . Identification of the Butyrivibrio fibrisolvens xylosidase gene (xylB) coding region and its expression in Escherichia coli. In Applied and environmental microbiology, 55, 306-11. doi:. https://pubmed.ncbi.nlm.nih.gov/2497707/
8. Uthoff, Stefan, Steinbüchel, Alexander. 2012. Purification and characterization of an NAD+-dependent XylB-like aryl alcohol dehydrogenase identified in Acinetobacter baylyi ADP1. In Applied and environmental microbiology, 78, 8743-52. doi:10.1128/AEM.02224-12. https://pubmed.ncbi.nlm.nih.gov/23042182/
9. Di Santo, M Carolina, Ilina, Natalia, Pagano, Eduardo A, Sozzi, Gabriel O. 2014. A Japanese plum α-l-arabinofuranosidase/β-D-xylosidase gene is developmentally regulated by alternative splicing. In Plant science : an international journal of experimental plant biology, 231, 173-83. doi:10.1016/j.plantsci.2014.12.001. https://pubmed.ncbi.nlm.nih.gov/25576002/