GLUD1,也称为谷氨酸脱氢酶1(glutamate dehydrogenase 1),是一种重要的线粒体内酶,负责将谷氨酸转化为α-酮戊二酸(α-KG),并在这一过程中产生氨和NADH。GLUD1在多种生物学过程中发挥重要作用,包括能量代谢、氨基酸代谢、神经传递和免疫调节等。GLUD1的表达和活性受到多种因素的调控,包括营养物质、激素、神经递质和表观遗传修饰等。
GLUD1的突变或异常表达与多种疾病相关,包括精神疾病、代谢疾病和癌症等。例如,GLUD1的基因突变可以导致先天性高胰岛素血症-高氨血症综合征(HI/HA),这是一种罕见的常染色体显性疾病,患者表现为反复发作的低血糖和持续轻度升高的血浆氨水平[5]。GLUD1的基因突变还可以导致先天性高胰岛素血症(CHI),这是一种常见的导致新生儿和幼儿持续性严重低血糖的原因[2,3,4]。此外,GLUD1的表达异常与一些癌症的发生和发展相关,例如肝细胞癌和宫颈癌[6,7]。
在精神疾病方面,GLUD1的基因敲除小鼠表现出恐惧记忆受损、社交互动减少和抑郁样行为增强[1]。这些结果表明GLUD1在调节情绪和行为方面发挥重要作用。GLUD1可能通过调节谷氨酸代谢和神经传递来影响这些过程。
在代谢疾病方面,GLUD1的基因突变可以导致HI/HA和CHI。HI/HA患者通常表现为低血糖和高氨血症,而CHI患者则主要表现为低血糖。这些疾病的发生机制可能与GLUD1的活性改变有关,导致胰岛素分泌异常和氨代谢紊乱[2,3,4,5,8]。
在癌症方面,GLUD1的表达异常与一些癌症的发生和发展相关。例如,在肝细胞癌中,GLUD1的表达水平显著降低,与预后不良相关。GLUD1沉默可以促进HCC细胞的生长和迁移[7]。在宫颈癌中,GLUD1的表达受到IGF2BP3的调控,IGF2BP3可以促进GLUD1的表达,从而影响谷氨酸和谷氨酰胺代谢,并促进免疫逃逸[6]。
综上所述,GLUD1是一种重要的线粒体内酶,在多种生物学过程中发挥重要作用。GLUD1的突变或异常表达与多种疾病相关,包括精神疾病、代谢疾病和癌症等。GLUD1的研究有助于深入理解能量代谢、氨基酸代谢、神经传递和免疫调节的机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Nakamoto, Chihiro, Kawamura, Meiko, Nakatsukasa, Ena, Takeuchi, Tomonori, Sakimura, Kenji. 2020. GluD1 knockout mice with a pure C57BL/6N background show impaired fear memory, social interaction, and enhanced depressive-like behavior. In PloS one, 15, e0229288. doi:10.1371/journal.pone.0229288. https://pubmed.ncbi.nlm.nih.gov/32078638/
2. Demirbilek, Hüseyin, Hussain, Khalid. 2017. Congenital Hyperinsulinism: Diagnosis and Treatment Update. In Journal of clinical research in pediatric endocrinology, 9, 69-87. doi:10.4274/jcrpe.2017.S007. https://pubmed.ncbi.nlm.nih.gov/29280746/
3. Snider, K E, Becker, S, Boyajian, L, Stanley, C A, Ganguly, A. 2012. Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. In The Journal of clinical endocrinology and metabolism, 98, E355-63. doi:10.1210/jc.2012-2169. https://pubmed.ncbi.nlm.nih.gov/23275527/
4. Giri, Dinesh, Hawton, Katherine, Senniappan, Senthil. 2021. Congenital hyperinsulinism: recent updates on molecular mechanisms, diagnosis and management. In Journal of pediatric endocrinology & metabolism : JPEM, 35, 279-296. doi:10.1515/jpem-2021-0369. https://pubmed.ncbi.nlm.nih.gov/34547194/
5. Ninković, Dorotea, Sarnavka, Vladimir, Bašnec, Anica, Santer, René, Barić, Ivo. . Hyperinsulinism-hyperammonemia syndrome: a de novo mutation of the GLUD1 gene in twins and a review of the literature. In Journal of pediatric endocrinology & metabolism : JPEM, 29, 1083-8. doi:10.1515/jpem-2016-0086. https://pubmed.ncbi.nlm.nih.gov/27383869/
6. Zhou, Tiantian, Xiao, Ziyi, Lu, Jin, Bo, Le, Wang, Jinhua. 2023. IGF2BP3-mediated regulation of GLS and GLUD1 gene expression promotes treg-induced immune escape in human cervical cancer. In American journal of cancer research, 13, 5289-5305. doi:. https://pubmed.ncbi.nlm.nih.gov/38058838/
7. You, Hong-Juan, Li, Qi, Ma, Li-Hong, Zheng, Kui-Yang, Tang, Ren-Xian. . Inhibition of GLUD1 mediated by LASP1 and SYVN1 contributes to hepatitis B virus X protein-induced hepatocarcinogenesis. In Journal of molecular cell biology, 16, . doi:10.1093/jmcb/mjae014. https://pubmed.ncbi.nlm.nih.gov/38587834/
8. Kapoor, Ritika R, Flanagan, Sarah E, Fulton, Piers, Ellard, Sian, Hussain, Khalid. 2009. Hyperinsulinism-hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype-phenotype correlations. In European journal of endocrinology, 161, 731-5. doi:10.1530/EJE-09-0615. https://pubmed.ncbi.nlm.nih.gov/19690084/