SH3RF1,也称为SH3和RF1结构域包含的蛋白,是一种在细胞中发挥重要作用的蛋白质。SH3RF1属于E3泛素连接酶家族,它具有SH3和RF1结构域,这些结构域使SH3RF1能够与多种蛋白质相互作用,并参与调节细胞信号通路。SH3RF1在细胞凋亡、细胞周期、DNA复制和p53信号通路中发挥作用,参与调节细胞生存和死亡。此外,SH3RF1还与JNK信号通路有关,该信号通路在细胞生长、分化、凋亡和炎症反应中发挥重要作用。
SH3RF1在多种疾病中发挥重要作用。例如,在ALS研究中,研究人员发现SH3RF1的表达与ALS的风险相关,可能通过基因表达或剪接在脊髓中发挥作用[1]。此外,SH3RF1还与糖尿病肾病和认知功能障碍有关,被鉴定为潜在的生物标志物[2]。在LKB1突变的肺腺癌中,SH3RF1的高表达与患者的良好预后相关,可能成为诊断和评估预后的生物标志物,并成为新的治疗靶点[3]。此外,SH3RF1和SH3RF2基因的SNP与结核病易感性相关,表明SH3RF2基因在结核病的发生发展中发挥作用[4]。SH3RF1还与FAT1蛋白水平调节相关,通过E3泛素连接酶活性影响FAT1蛋白的稳定性[5]。在羊的胃肠道线虫感染中,SH3RF1是候选基因之一,可能与宿主对线虫感染的抵抗力或易感性相关[6]。此外,SH3RF1和SH3RF2基因的表达与阿拉伯马的运动表现相关,SH3RF2基因的突变与马的赛马表现相关[7]。在视网膜中,SH3RF1的表达在系统性给予醛固酮后下调,可能与视网膜神经节细胞损失和视网膜神经纤维层变薄相关[8]。最后,SH3RF1和SH3RF2基因的表达与前列腺癌相关,可能成为前列腺癌的潜在生物标志物[9]。此外,SH3RF1还与CHMP2BIntron5相关的额颞叶痴呆的神经毒性相关,抑制SH3RF1的表达可以减轻神经元形态异常、行为缺陷和细胞死亡[10]。
综上所述,SH3RF1是一种重要的E3泛素连接酶,在细胞凋亡、细胞周期、DNA复制、p53信号通路和JNK信号通路中发挥作用。SH3RF1与多种疾病相关,包括ALS、糖尿病肾病、认知功能障碍、肺腺癌、结核病、胃肠道线虫感染、运动表现、视网膜病变和前列腺癌。此外,SH3RF1还与CHMP2BIntron5相关的额颞叶痴呆的神经毒性相关。SH3RF1的研究有助于深入理解其生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Humphrey, Jack, Venkatesh, Sanan, Hasan, Rahat, Fratta, Pietro, Raj, Towfique. 2022. Integrative transcriptomic analysis of the amyotrophic lateral sclerosis spinal cord implicates glial activation and suggests new risk genes. In Nature neuroscience, 26, 150-162. doi:10.1038/s41593-022-01205-3. https://pubmed.ncbi.nlm.nih.gov/36482247/
2. Peng, Jing, Yang, Sha, Zhou, Chaomin, Zhang, Jiqing, Zha, Yan. 2024. Identification of common biomarkers in diabetic kidney disease and cognitive dysfunction using machine learning algorithms. In Scientific reports, 14, 22057. doi:10.1038/s41598-024-72327-w. https://pubmed.ncbi.nlm.nih.gov/39333211/
3. Wang, Guanghui, Bie, Fenglong, Qu, Xiao, Wang, Kai, Du, Jiajun. 2018. Expression profiling of ubiquitin-related genes in LKB1 mutant lung adenocarcinoma. In Scientific reports, 8, 13221. doi:10.1038/s41598-018-31592-2. https://pubmed.ncbi.nlm.nih.gov/30185829/
4. Chen, Hao, Zhou, Juan, Jiao, Lin, Zhang, Wei, Ying, Binwu. 2020. Assessing the role of SH3RF1 and SH3RF2 polymorphisms in susceptibility to tuberculosis: A case-control study in the Han Chinese population. In Microbial pathogenesis, 152, 104567. doi:10.1016/j.micpath.2020.104567. https://pubmed.ncbi.nlm.nih.gov/33129950/
5. de Bock, Charles E, Hughes, Michael R, Snyder, Kimberly, Hondermarck, Hubert, Thorne, Rick F. 2017. Protein interaction screening identifies SH3RF1 as a new regulator of FAT1 protein levels. In FEBS letters, 591, 667-678. doi:10.1002/1873-3468.12569. https://pubmed.ncbi.nlm.nih.gov/28129444/
6. Rafeie, Farjad, Abdoli, Ramin, Hossein-Zadeh, Navid Ghavi, Talebi, Reza, Szmatoła, Tomasz. 2023. Interaction networks and pathway analysis of genetic resistance to gastrointestinal nematodes in sheep. In Tropical animal health and production, 55, 34. doi:10.1007/s11250-022-03448-5. https://pubmed.ncbi.nlm.nih.gov/36609787/
7. Ropka-Molik, K, Stefaniuk-Szmukier, M, Piórkowska, K, Szmatoła, T, Bugno-Poniewierska, M. 2018. Molecular characterization of the apoptosis-related SH3RF1 and SH3RF2 genes and their association with exercise performance in Arabian horses. In BMC veterinary research, 14, 237. doi:10.1186/s12917-018-1567-0. https://pubmed.ncbi.nlm.nih.gov/30107803/
8. Ono, Aoi, Hirooka, Kazuyuki, Nakano, Yuki, Nishiyama, Akira, Tsujikawa, Akitaka. 2018. Gene expression changes in the retina after systemic administration of aldosterone. In Japanese journal of ophthalmology, 62, 499-507. doi:10.1007/s10384-018-0595-4. https://pubmed.ncbi.nlm.nih.gov/29713904/
9. Lima, Tânia, Ferreira, Rita, Freitas, Marina, Vitorino, Rui, Fardilha, Margarida. 2022. Integration of Automatic Text Mining and Genomic and Proteomic Analysis to Unravel Prostate Cancer Biomarkers. In Journal of proteome research, 21, 447-458. doi:10.1021/acs.jproteome.1c00763. https://pubmed.ncbi.nlm.nih.gov/35114790/
10. West, Ryan J H, Ugbode, Chris, Gao, Fen-Biao, Sweeney, Sean T. . The pro-apoptotic JNK scaffold POSH/SH3RF1 mediates CHMP2BIntron5-associated toxicity in animal models of frontotemporal dementia. In Human molecular genetics, 27, 1382-1395. doi:10.1093/hmg/ddy048. https://pubmed.ncbi.nlm.nih.gov/29432529/