Tnfrsf1a基因,也称为肿瘤坏死因子受体超家族成员1A(TNFRSF1A),编码肿瘤坏死因子受体1(TNFR1),这是一种细胞表面受体,与肿瘤坏死因子α(TNF-α)结合。TNF-α是一种多功能细胞因子,参与炎症、免疫反应、细胞凋亡和细胞生长调节等多种生理和病理过程。TNFR1通过与TNF-α结合,激活下游信号通路,如核因子κB(NF-κB)和丝裂原活化蛋白激酶(MAPK)途径,进而影响细胞的生存、生长和死亡。
TNFRSF1A基因的突变或变异与多种疾病相关。例如,TNFRSF1A基因的突变可能导致家族性地中海热(FMF)和肿瘤坏死因子受体相关周期性综合征(TRAPS),这两种疾病都是常染色体显性遗传的自身炎症性疾病,表现为反复发热和炎症反应。此外,TNFRSF1A基因的变异还与炎症性肌病和自身免疫性疾病相关。
TNFRSF1A基因在多种癌症中发挥重要作用。例如,TNFRSF1A基因的变异可能与乳腺癌的易感性相关。TNFRSF1A基因的突变还可能导致头颈部癌症患者在接受调强放疗(IMRT)时出现营养不良。此外,TNFRSF1A基因的表达还可能影响乳腺癌细胞中NF-κB信号通路的活性,进而影响肿瘤的发生和发展。
TNFRSF1A基因的表达还可能受到其他因素的影响。例如,TNF-α可以导致TNFRSF1A基因的不同剪接变体的表达发生改变。此外,TNFRSF1A基因的变异还可能影响TNF信号通路在猪体内的活性。
总之,TNFRSF1A基因是一种重要的基因,参与调控炎症、免疫反应和癌症等多种生理和病理过程。TNFRSF1A基因的突变或变异与多种疾病相关,包括自身炎症性疾病、炎症性肌病、自身免疫性疾病和癌症。研究TNFRSF1A基因的生物学功能和疾病相关性,有助于深入理解炎症和癌症的发病机制,为疾病的治疗和预防提供新的思路和策略[1][2][3][4][5][6][7][8][9][10]。
参考文献:
1. Homa-Mlak, Iwona, Mlak, Radosław, Mazurek, Marcin, Rahnama-Hezavah, Mansur, Małecka-Massalska, Teresa. 2022. TNFRSF1A Gene Polymorphism (−610 T > G, rs4149570) as a Predictor of Malnutrition and a Prognostic Factor in Patients Subjected to Intensity-Modulated Radiation Therapy Due to Head and Neck Cancer. In Cancers, 14, . doi:10.3390/cancers14143407. https://pubmed.ncbi.nlm.nih.gov/35884467/
2. Perik-Zavodskaia, Olga, Zhukova, Julia, Perik-Zavodskii, Roman, Lopatnikova, Julia, Sennikov, Sergey. 2023. TNFα Causes a Shift in Gene Expression of TNFRSF1A and TNFRSF1B Isoforms. In Genes, 14, . doi:10.3390/genes14051074. https://pubmed.ncbi.nlm.nih.gov/37239433/
3. Hu, Zhengzheng, Li, Hejun, Xie, Rui, Yin, Zongjun, Liu, Yang. 2019. Genomic variant in porcine TNFRSF1A gene and its effects on TNF signaling pathway in vitro. In Gene, 700, 105-109. doi:10.1016/j.gene.2019.03.046. https://pubmed.ncbi.nlm.nih.gov/30914326/
4. Hausmann, Leili Daiane, de Almeida, Bibiana Sgorla, de Souza, Ilíada Rainha, de Toledo E Silva, Guilherme, Muniz, Yara Costa Netto. 2021. Association of TNFRSF1A and IFNLR1 Gene Polymorphisms with the Risk of Developing Breast Cancer and Clinical Pathologic Features. In Biochemical genetics, 59, 1233-1246. doi:10.1007/s10528-021-10060-z. https://pubmed.ncbi.nlm.nih.gov/33751344/
5. Egusquiaguirre, Susana P, Yeh, Jennifer E, Walker, Sarah R, Liu, Suhu, Frank, David A. 2018. The STAT3 Target Gene TNFRSF1A Modulates the NF-κB Pathway in Breast Cancer Cells. In Neoplasia (New York, N.Y.), 20, 489-498. doi:10.1016/j.neo.2018.03.004. https://pubmed.ncbi.nlm.nih.gov/29621649/
6. Cantarini, L, Lucherini, O M, Vitale, A, Muscari, I, Galeazzi, M. . Expanding spectrum of TNFRSF1A gene mutations among patients with idiopathic recurrent acute pericarditis. In Internal medicine journal, 43, 725-7. doi:10.1111/imj.12163. https://pubmed.ncbi.nlm.nih.gov/23745996/
7. Nicolás-Sánchez, F J, Aróstegui-Gorospe, J I, Piñol Ripoll, G, Sarrat-Nuevo, R M, Melgarejo-Moreno, P J. 2021. Meningical siderosis in a patient carrying the p.Arg92Gln variant TNFRSF1A gene. In Neurologia, 37, 237-239. doi:10.1016/j.nrl.2021.04.009. https://pubmed.ncbi.nlm.nih.gov/34083063/
8. Fujikawa, K, Migita, K, Shigemitsu, Y, Kawakami, A, Eguchi, K. . MEFV gene polymorphisms and TNFRSF1A mutation in patients with inflammatory myopathy with abundant macrophages. In Clinical and experimental immunology, 178, 224-8. doi:10.1111/cei.12407. https://pubmed.ncbi.nlm.nih.gov/24965843/
9. Vuran, Gamze, Berdeli, Afig. . Next-Generation Sequencing Analysis of MVK, NLRP3, TNFRSF1A, and PSTPIP1 Genes in Patients without MEFV Gene Variation and Genotype-Phenotype Correlation. In European journal of rheumatology, 9, 62-67. doi:10.5152/eurjrheum.2022.21049. https://pubmed.ncbi.nlm.nih.gov/35546330/
10. Gruden, M A, Davydova, T V, Ratmirov, A M, Sewell, R D E. 2021. Effects of Antibodies to Glutamate on Cerebral Expression of the Tnfrsf1A Gene under Conditions of Spatial Amnesia Induced by Proinflammatory Protein S100A9 Fibrils in Aging Mice. In Bulletin of experimental biology and medicine, 172, 18-21. doi:10.1007/s10517-021-05322-0. https://pubmed.ncbi.nlm.nih.gov/34796426/