Acot12,也称为乙酰辅酶A硫酯酶12,是一种重要的酶,属于酰基辅酶A硫酯酶家族。该家族的酶负责水解酰基辅酶A酯,如饱和、不饱和、支链酰基辅酶A、胆酸辅酶A、前列腺素辅酶A酯等,产生相应的游离酸和辅酶A。酰基辅酶A硫酯酶在脂肪酸代谢、能量代谢和细胞信号传导中发挥着重要作用。然而,酰基辅酶A硫酯酶基因的命名存在一些混乱,为了解决这个问题,Hunt等人[3]提出了一个新的命名法,将哺乳动物酰基辅酶A硫酯酶/水解酶的基因命名为ACOT1-ACOT12,而小鼠和大鼠的基因命名为Acot1-Acot12。
酰基辅酶A硫酯酶在多种疾病中发挥重要作用,包括癌症、炎症性疾病、代谢性疾病等。例如,Bao等人[1]发现,由胶质瘤干细胞(GSCs)分泌的细胞外囊泡中的miR-155-5p能够下调ACOT12的表达,从而促进胶质瘤细胞的间质转化,促进肿瘤的侵袭性生长。此外,Xing等人[2]发现,ACOT12基因的突变频率在银屑病患者中显著高于非银屑病患者,提示ACOT12可能与银屑病的发病机制相关。Vossen等人[6]发现,ACOT12基因的变异与正常蛋白C(PC)血浆水平的变化相关,PC是血液凝固系统中的一种重要蛋白质,参与维持血液凝固和抗凝的平衡。
酰基辅酶A硫酯酶还与脂肪代谢相关。Fang等人[4]发现,牛激素敏感脂肪酶(HSL)基因的表达与脂肪沉积性状相关,HSL基因的过表达可以下调脂质生成相关基因(如FASN、LPL和ACOT12)的表达。此外,Zhao等人[7]通过转录组分析发现,Allium mongolicum Regel乙醇提取物(AME)可以降低羔羊肝脏中支链脂肪酸(BCFAs)的水平,同时下调了与BCFAs合成相关的候选基因(如CYP2B6、ACOT12、THEM4、ACSF2、LPIN1和ADCY4)的表达。
酰基辅酶A硫酯酶在糖尿病发病机制中也可能发挥重要作用。Jonas等人[5]发现,ACOT12基因在糖尿病小鼠模型中的表达与血糖水平相关,提示ACOT12可能参与调节胰岛细胞的功能。此外,Huang等人[9]发现,由脱氢表雄酮(DHEA)诱导的多囊卵巢综合征(PCOS)小鼠的雌性后代在肝脏中与葡萄糖和脂质代谢相关的基因(如Pparγ、Acot1/2、Fgf21、Pdk4和Inhbb)的表达上调,而Cyp17a1的表达下调,提示ACOT12可能与PCOS后代的代谢紊乱相关。
酰基辅酶A硫酯酶在细胞内不同细胞器中发挥重要作用,例如过氧化物酶体和线粒体。Westin等人[8]发现,短链和中链酰基辅酶A硫酯酶(如Acot12)在过氧化物酶体中表达,并与短链和中链肉碱酰基转移酶(如Crat和Crot)协同工作,共同促进β-氧化产物的转运和进一步代谢。
综上所述,Acot12是一种重要的酰基辅酶A硫酯酶,参与调控脂肪酸代谢、能量代谢和细胞信号传导。Acot12在多种疾病中发挥重要作用,包括癌症、炎症性疾病、代谢性疾病和多囊卵巢综合征。酰基辅酶A硫酯酶的研究有助于深入理解脂肪酸代谢和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Bao, Zixu, Zhang, Ning, Niu, Wanxiang, Hu, Shanshan, Niu, Chaoshi. 2022. Exosomal miR-155-5p derived from glioma stem-like cells promotes mesenchymal transition via targeting ACOT12. In Cell death & disease, 13, 725. doi:10.1038/s41419-022-05097-w. https://pubmed.ncbi.nlm.nih.gov/35986010/
2. Xing, Jianxiao, Zhao, Xincheng, Li, Xiaofang, Li, Xinhua, Zhang, Kaiming. 2019. Variation at ACOT12 and CT62 locus represents susceptibility to psoriasis in Han population. In Molecular genetics & genomic medicine, 8, e1098. doi:10.1002/mgg3.1098. https://pubmed.ncbi.nlm.nih.gov/31858748/
3. Hunt, Mary C, Yamada, Junji, Maltais, Lois J, Podesta, Ernesto J, Alexson, Stefan E H. 2005. A revised nomenclature for mammalian acyl-CoA thioesterases/hydrolases. In Journal of lipid research, 46, 2029-32. doi:. https://pubmed.ncbi.nlm.nih.gov/16103133/
4. Fang, Xibi, Zhao, Zhihui, Jiang, Ping, Xiao, Hang, Yang, Runjun. 2017. Identification of the bovine HSL gene expression profiles and its association with fatty acid composition and fat deposition traits. In Meat science, 131, 107-118. doi:10.1016/j.meatsci.2017.05.003. https://pubmed.ncbi.nlm.nih.gov/28501436/
5. Jonas, Wenke, Kluth, Oliver, Helms, Anett, Schürmann, Annette, Vogel, Heike. 2022. Identification of Novel Genes Involved in Hyperglycemia in Mice. In International journal of molecular sciences, 23, . doi:10.3390/ijms23063205. https://pubmed.ncbi.nlm.nih.gov/35328627/
6. Vossen, C Y, Koeleman, B P, Hasstedt, S J, Rosendaal, F R, Bovill, E G. . Genetic variants associated with protein C levels. In Journal of thrombosis and haemostasis : JTH, 11, 715-23. doi:10.1111/jth.12157. https://pubmed.ncbi.nlm.nih.gov/23387557/
7. Zhao, Yabo, Zhang, Yanmei, Khas, Erdene, Cao, Qina, Ao, Changjin. . Transcriptome analysis reveals candidate genes of the synthesis of branched-chain fatty acids related to mutton flavor in the lamb liver using Allium mongolicum Regel extract. In Journal of animal science, 100, . doi:10.1093/jas/skac256. https://pubmed.ncbi.nlm.nih.gov/35946924/
8. Westin, M A K, Hunt, M C, Alexson, S E H. . Short- and medium-chain carnitine acyltransferases and acyl-CoA thioesterases in mouse provide complementary systems for transport of beta-oxidation products out of peroxisomes. In Cellular and molecular life sciences : CMLS, 65, 982-90. doi:10.1007/s00018-008-7576-6. https://pubmed.ncbi.nlm.nih.gov/18264800/
9. Huang, Ying, Gao, Jiang-Man, Zhang, Chun-Mei, Yu, Yang, Qiao, Jie. . Assessment of growth and metabolism characteristics in offspring of dehydroepiandrosterone-induced polycystic ovary syndrome adults. In Reproduction (Cambridge, England), 152, 705-714. doi:. https://pubmed.ncbi.nlm.nih.gov/27798284/