TMEM59L,也称为Transmembrane protein 59 like,是一种神经元特异性跨膜蛋白。它主要表达于神经元中,并在发育过程中逐渐增加。TMEM59L的生物学功能目前尚不明确,但已有研究表明它在多种生物学过程中发挥作用,包括细胞凋亡、神经元发育和肿瘤发生发展。
TMEM59L在肿瘤发生发展中发挥重要作用。研究表明,TMEM59L的表达与结直肠癌淋巴转移相关[1]。在结直肠癌中,TMEM59L的表达水平升高与患者预后不良相关[3]。此外,TMEM59L的表达还与胶质母细胞瘤的放疗敏感性相关[2]。高表达TMEM59L的胶质母细胞瘤细胞对放疗更为敏感,这可能与TMEM59L增强放疗敏感性有关。
TMEM59L还与神经元的发育和功能相关。研究发现,TMEM59L在神经元中表达,并与神经元凋亡相关[4]。TMEM59L的表达水平升高可诱导神经元凋亡,而抑制TMEM59L的表达则可保护神经元免受氧化应激诱导的细胞死亡。此外,TMEM59L还与神经元的分化、轴突生长和细胞信号传导相关[8]。TMEM59L的敲低可抑制神经元轴突的延伸,表明TMEM59L在神经元发育中发挥重要作用。
TMEM59L还与胰岛素分泌相关。研究发现,TMEM59L的表达与MIN6小鼠胰岛β细胞系的葡萄糖刺激的胰岛素分泌(GSIS)相关[6]。抑制TMEM59L的表达可降低MIN6细胞对葡萄糖和KCl刺激的胰岛素分泌,而过表达TMEM59L则可挽救敲低TMEM59L的MIN6细胞的GSIS功能。这表明TMEM59L可能参与调控胰岛素的分泌。
TMEM59L的表达还与其他生物学过程相关。研究发现,TMEM59L的表达与脂肪来源的间充质干细胞(ADSCs)向神经元的分化相关[7]。在ADSCs向神经元的分化过程中,TMEM59L的表达水平升高,这表明TMEM59L可能参与调控神经元的分化和发育。此外,TMEM59L的表达还与肾脏发育相关[5]。在肾脏发育过程中,TMEM59L的表达水平升高,表明TMEM59L可能参与调控肾脏的发育和形成。
综上所述,TMEM59L是一种神经元特异性跨膜蛋白,在多种生物学过程中发挥作用,包括肿瘤发生发展、神经元发育、胰岛素分泌和肾脏发育等。TMEM59L的研究有助于深入理解神经元特异性蛋白的功能和调控机制,为相关疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Yang, Hongjie, Liu, Jiafei, Jiang, Peishi, Sun, Yi, Zhu, Siwei. 2023. An Analysis of the Gene Expression Associated with Lymph Node Metastasis in Colorectal Cancer. In International journal of genomics, 2023, 9942663. doi:10.1155/2023/9942663. https://pubmed.ncbi.nlm.nih.gov/37719786/
2. Gao, Dezhi, Wang, Peng, Zhi, Lin, Qiu, Xiaoguang, Liu, Yanwei. . Expression of TMEM59L associated with radiosensitive in glioblastoma. In Journal of radiation research, 64, 833-841. doi:10.1093/jrr/rrad053. https://pubmed.ncbi.nlm.nih.gov/37439405/
3. Shi, Chang, Zhang, Lizhi, Chen, Dan, Guo, Huiqi, Sun, Lei. 2022. Prognostic value of TMEM59L and its genomic and immunological characteristics in cancer. In Frontiers in immunology, 13, 1054157. doi:10.3389/fimmu.2022.1054157. https://pubmed.ncbi.nlm.nih.gov/36618425/
4. Zheng, Qiuyang, Zheng, Xiaoyuan, Zhang, Lishan, Xu, Huaxi, Zhang, Yun-Wu. 2016. The Neuron-Specific Protein TMEM59L Mediates Oxidative Stress-Induced Cell Death. In Molecular neurobiology, 54, 4189-4200. doi:10.1007/s12035-016-9997-9. https://pubmed.ncbi.nlm.nih.gov/27324899/
5. Rutledge, Elisabeth A, McMahon, Andrew P. 2020. Mutational analysis of genes with ureteric progenitor cell-specific expression in branching morphogenesis of the mouse kidney. In Developmental dynamics : an official publication of the American Association of Anatomists, 249, 765-774. doi:10.1002/dvdy.157. https://pubmed.ncbi.nlm.nih.gov/32017326/
6. Kobayashi, Masaki, Yamato, Eiji, Tanabe, Koji, Miyazaki, Satsuki, Miyazaki, Jun-ichi. 2016. Functional Analysis of Novel Candidate Regulators of Insulin Secretion in the MIN6 Mouse Pancreatic β Cell Line. In PloS one, 11, e0151927. doi:10.1371/journal.pone.0151927. https://pubmed.ncbi.nlm.nih.gov/26986842/
7. Yuan, Xiaodong, Li, Wen, Liu, Qing, Yan, Qi, Zhang, Pingshu. 2024. Genomic characteristics of adipose-derived stromal cells induced into neurons based on single-cell RNA sequencing. In Heliyon, 10, e33079. doi:10.1016/j.heliyon.2024.e33079. https://pubmed.ncbi.nlm.nih.gov/38984299/
8. Aoki, Makoto, Segawa, Hiroshi, Naito, Mayumi, Okamoto, Hitoshi. 2014. Identification of possible downstream genes required for the extension of peripheral axons in primary sensory neurons. In Biochemical and biophysical research communications, 445, 357-62. doi:10.1016/j.bbrc.2014.01.193. https://pubmed.ncbi.nlm.nih.gov/24513284/