推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Aassem1/Cya 基因敲除小鼠
复苏/繁育服务
产品名称:
Aass-KO
产品编号:
S-KO-09105
品系背景:
C57BL/6JCya
小鼠资源库
* 使用本品系发表的文献需注明:Aass-KO mice (Strain S-KO-09105) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Aassem1/Cya
品系编号
KOCMP-30956-Aass-B6J-VA
产品编号
S-KO-09105
基因名
Aass
品系背景
C57BL/6JCya
基因别称
LKR,LOR,SDH,Lorsdh,LKR/SDH,LOR/SDH
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
在研小鼠
环境标准
SPF
供应地区
中国
品系详情
Aass位于小鼠的6号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得Aass基因敲除小鼠,性成熟后取精子冻存。
基因研究概述
基因Aass,全称为α-氨基己二酸半醛合酶(Alpha-Aminoadipic Semialdehyde Synthase),编码的是一种双功能酶。这种酶在L-赖氨酸的降解途径中发挥关键作用,负责将L-赖氨酸转化为α-氨基己二酸半醛(α-aminoadipate semialdehyde, AASA)。AASS基因的突变会导致多种疾病,包括智力障碍、发育迟缓、微头症等[1,3]。此外,AASS基因的表达和功能还与其他疾病相关,如糖尿病肾病(DN)和胰岛素抵抗等[4,6]。
根据参考文献,AASS基因的突变与智力障碍、发育迟缓、微头症等疾病相关。这些疾病通常表现为发育延迟、智力障碍、微头症、短身材等症状。研究发现,在沙特家族中,AASS基因的纯合子移码突变和剪接受体变异与这些疾病相关[1]。此外,AASS基因的突变还与高赖氨酸血症(hyperlysinemia)相关。高赖氨酸血症是一种罕见的常染色体隐性遗传病,导致赖氨酸降解途径中的AASS酶活性降低,从而引起赖氨酸水平升高[2,3,5]。高赖氨酸血症的表型多样,包括严重的神经症状和轻微的临床表现,甚至无症状[3,5]。研究发现,高赖氨酸血症的神经症状与AASS基因的突变类型相关。例如,AASS基因的R65Q突变在LKR域会导致高赖氨酸血症I型,这是一种没有明显临床意义的良性代谢变异。而AASS基因的G489E突变在SDH域会导致高赖氨酸血症II型,这是一种严重的神经代谢疾病,表现为发育迟缓和智力障碍[5]。
除了与智力障碍和高赖氨酸血症相关外,AASS基因的表达和功能还与其他疾病相关。例如,AASS基因的表达在糖尿病肾病中升高,并与氧化应激和肾脏损伤相关[4]。此外,AASS基因的表达还与胰岛素抵抗相关,可能作为预测糖尿病风险和干预反应的生物标志物[6]。这些研究表明,AASS基因在多种生物学过程中发挥重要作用,包括赖氨酸降解、神经发育、肾脏功能和胰岛素抵抗等。
综上所述,基因Aass编码的α-氨基己二酸半醛合酶在多种生物学过程中发挥重要作用,包括赖氨酸降解、神经发育、肾脏功能和胰岛素抵抗等。AASS基因的突变会导致智力障碍、发育迟缓、微头症和高赖氨酸血症等疾病。此外,AASS基因的表达和功能还与其他疾病相关,如糖尿病肾病和胰岛素抵抗等。因此,研究AASS基因的功能和表达调控机制对于理解相关疾病的发病机制和开发新的治疗方法具有重要意义。
参考文献:
1. Naseer, Muhammad Imran, Abdulkareem, Angham Abdulrahman, Jan, Mohammed M, Alharazy, Shatha, AlQahtani, Mohammad H. 2020. Next generation sequencing reveals novel homozygous frameshift in PUS7 and splice acceptor variants in AASS gene leading to intellectual disability, developmental delay, dysmorphic feature and microcephaly. In Saudi journal of biological sciences, 27, 3125-3131. doi:10.1016/j.sjbs.2020.09.033. https://pubmed.ncbi.nlm.nih.gov/33100873/
2. Houten, Sander M, Te Brinke, Heleen, Denis, Simone, Wanders, Ronald Ja, Duran, Marinus. 2013. Genetic basis of hyperlysinemia. In Orphanet journal of rare diseases, 8, 57. doi:10.1186/1750-1172-8-57. https://pubmed.ncbi.nlm.nih.gov/23570448/
3. Marinella, G, Pascarella, F, Vetro, A, Orsini, A, Battini, R. 2024. Hyperlysinemia, an ultrarare inborn error of metabolism: Review and update. In Seizure, 120, 135-141. doi:10.1016/j.seizure.2024.06.020. https://pubmed.ncbi.nlm.nih.gov/38991296/
4. Yan, Qiaofang, Du, Yuanyuan, Huang, Fei, Han, Liqiao, Huang, Xianzhang. 2024. Identification of mitochondria-related genes as diagnostic biomarkers for diabetic nephropathy and their correlation with immune infiltration: New insights from bioinformatics analysis. In International immunopharmacology, 142, 113114. doi:10.1016/j.intimp.2024.113114. https://pubmed.ncbi.nlm.nih.gov/39265357/
5. Guo, Ye, Wu, Junjie, Wang, Min, Yang, Chonglin, Guo, Weixiang. 2022. The Metabolite Saccharopine Impairs Neuronal Development by Inhibiting the Neurotrophic Function of Glucose-6-Phosphate Isomerase. In The Journal of neuroscience : the official journal of the Society for Neuroscience, 42, 2631-2646. doi:10.1523/JNEUROSCI.1459-21.2022. https://pubmed.ncbi.nlm.nih.gov/35135854/
6. Lutter, Dominik, Sachs, Stephan, Walter, Marc, Bergman, Bryan C, Hofmann, Susanna M. 2023. Skeletal muscle and intermuscular adipose tissue gene expression profiling identifies new biomarkers with prognostic significance for insulin resistance progression and intervention response. In Diabetologia, 66, 873-883. doi:10.1007/s00125-023-05874-y. https://pubmed.ncbi.nlm.nih.gov/36790478/