HK1,也称为Hexokinase 1,是一种重要的糖酵解途径(Embden-Meyerhof途径)中的调控酶。它负责催化葡萄糖磷酸化成为葡萄糖-6-磷酸(G6P),这是糖酵解的第一步,也是不可逆的一步。HK1在细胞中起着关键作用,它不仅影响葡萄糖的代谢,还与多种疾病的发生和发展密切相关。
HK1在多种癌症中发挥重要作用。例如,在非小细胞肺癌中,HK1的表达上调与不良预后相关[1]。研究发现,HK1的表达水平与肿瘤细胞的糖酵解水平呈正相关,而糖酵解是肿瘤细胞生长和繁殖的主要能量来源。此外,HK1还与肿瘤细胞的代谢重编程有关,通过调节糖酵解和三羧酸循环(TCA循环)的代谢途径,影响肿瘤细胞的能量代谢和增殖[4,8]。在膀胱癌中,HK1的表达上调也与肿瘤的进展和预后不良相关[4]。研究表明,HK1的表达水平与肿瘤细胞的糖酵解水平呈正相关,而糖酵解是肿瘤细胞生长和繁殖的主要能量来源。
HK1还与先天性高胰岛素血症(CHI)的发生有关。CHI是一种罕见的遗传性疾病,由于胰岛素分泌失调导致血糖水平过低。研究发现,HK1基因的突变与CHI的发生密切相关[2,5,6]。HK1基因突变导致HK1酶活性降低,使得葡萄糖不能有效地转化为G6P,从而抑制了糖酵解途径。这导致胰岛素分泌增加,进而导致血糖水平降低。
此外,HK1还与遗传性溶血性贫血(HA)的发生有关。研究发现,HK1基因的突变可以导致HA的发生,这种突变导致HK1酶活性降低,使得葡萄糖不能有效地转化为G6P,从而抑制了糖酵解途径[3]。这导致红细胞内能量供应不足,从而引起溶血性贫血。
HK1还与视网膜色素变性(RP)的发生有关。研究发现,HK1基因的突变可以导致RP的发生,这种突变导致HK1酶活性降低,使得葡萄糖不能有效地转化为G6P,从而抑制了糖酵解途径。这导致视网膜细胞内能量供应不足,从而引起RP[7]。
综上所述,HK1是一种重要的糖酵解途径中的调控酶,它不仅影响葡萄糖的代谢,还与多种疾病的发生和发展密切相关。HK1在多种癌症中发挥重要作用,如非小细胞肺癌和膀胱癌。此外,HK1还与先天性高胰岛素血症、遗传性溶血性贫血和视网膜色素变性的发生有关。HK1的研究有助于深入理解葡萄糖代谢的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Jiang, Jun, Huang, DengLiang, Jiang, Yuan, Tong, SiXian, Ma, YanYan. 2021. Lactate Modulates Cellular Metabolism Through Histone Lactylation-Mediated Gene Expression in Non-Small Cell Lung Cancer. In Frontiers in oncology, 11, 647559. doi:10.3389/fonc.2021.647559. https://pubmed.ncbi.nlm.nih.gov/34150616/
2. Demirbilek, Hüseyin, Hussain, Khalid. 2017. Congenital Hyperinsulinism: Diagnosis and Treatment Update. In Journal of clinical research in pediatric endocrinology, 9, 69-87. doi:10.4274/jcrpe.2017.S007. https://pubmed.ncbi.nlm.nih.gov/29280746/
3. Dongerdiye, Rashmi, Jagadeesh, Sujatha, Suresh, Beena, Warang, Prashant, Kedar, Prabhakar S. 2020. Novel pathogenic variant c.2714C>A (p. Thr905Lys) in the HK1 gene causing severe haemolytic anaemia with developmental delay in an Indian family. In Journal of clinical pathology, 74, 620-624. doi:10.1136/jclinpath-2020-206960. https://pubmed.ncbi.nlm.nih.gov/33361148/
4. Massari, Francesco, Ciccarese, Chiara, Santoni, Matteo, Cheng, Liang, Montironi, Rodolfo. 2016. Metabolic phenotype of bladder cancer. In Cancer treatment reviews, 45, 46-57. doi:10.1016/j.ctrv.2016.03.005. https://pubmed.ncbi.nlm.nih.gov/26975021/
5. Giri, Dinesh, Hawton, Katherine, Senniappan, Senthil. 2021. Congenital hyperinsulinism: recent updates on molecular mechanisms, diagnosis and management. In Journal of pediatric endocrinology & metabolism : JPEM, 35, 279-296. doi:10.1515/jpem-2021-0369. https://pubmed.ncbi.nlm.nih.gov/34547194/
6. Gϋemes, Maria, Rahman, Sofia Asim, Kapoor, Ritika R, Dattani, Mehul Tulsidas, Shah, Pratik. . Hyperinsulinemic hypoglycemia in children and adolescents: Recent advances in understanding of pathophysiology and management. In Reviews in endocrine & metabolic disorders, 21, 577-597. doi:10.1007/s11154-020-09548-7. https://pubmed.ncbi.nlm.nih.gov/32185602/
7. Shah, Saumya M, Schimmenti, Lisa A, Chiang, John, Iezzi, Raymond. . ASSOCIATION OF PIGMENTED PARAVENOUS RETINOCHOROIDAL ATROPHY WITH A PATHOGENIC VARIANT IN THE HK1 GENE. In Retinal cases & brief reports, 16, 770-774. doi:10.1097/ICB.0000000000001077. https://pubmed.ncbi.nlm.nih.gov/33165303/
8. Bustamante, Marta F, Oliveira, Patricia G, Garcia-Carbonell, Ricard, Miyamoto, Shigeki, Guma, Monica. 2018. Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. In Annals of the rheumatic diseases, 77, 1636-1643. doi:10.1136/annrheumdis-2018-213103. https://pubmed.ncbi.nlm.nih.gov/30061164/