ACVR2A,也称为Activin A受体2A或活化素受体2A,是一种重要的细胞表面受体,属于TGF-β超家族。该受体与活化素A结合后,可以激活下游的Smad信号通路,进而调节细胞的生长、分化和凋亡等生物学过程。ACVR2A的表达和功能在多种组织中都有所报道,包括肝脏、肌肉和免疫细胞等。
在肝脏疾病中,ACVR2A的表达和功能与非酒精性脂肪性肝炎(NASH)相关肝癌(HCC)的发生发展密切相关。研究发现,与其它病因的HCC相比,NASH-HCC中ACVR2A的突变率更高,且ACVR2A突变与NASH-HCC的发生发展密切相关[1]。此外,NASH-HCC中ACVR2A的表达水平也显著升高,提示ACVR2A可能参与了NASH-HCC的发生发展[5]。
在肌肉发育中,ACVR2A是肌生成抑制素(MSTN)的受体,MSTN是一种抑制肌肉生长和分化的蛋白质。研究发现,ACVR2A的表达和功能与肌肉的生长和分化密切相关。例如,在鸡的肌细胞中,ACVR2A的表达水平在胚胎阶段和出壳后有所不同,且ACVR2A的沉默可以促进肌细胞的增殖[2]。此外,研究发现,ACVR2A的基因多态性与精英运动员的肌肉表型有关[9]。
在免疫系统中,ACVR2A的表达和功能与Th17细胞的分化密切相关。Th17细胞是一类产生IL-17的T辅助细胞,与多种自身免疫性疾病的发生发展有关。研究发现,ACVR2A在Th17细胞的分化过程中被诱导表达,且ACVR2A的表达与Th17细胞的特异性有关[7]。
除了上述三种组织外,ACVR2A还与多种疾病的发生发展有关。例如,研究发现,ACVR2A的基因多态性与妊娠高血压综合征(HDP)和先兆子痫(PE)的发生风险有关[4,6,8]。此外,ACVR2A的突变还与结直肠癌的发生发展有关[3]。综上所述,ACVR2A是一种重要的细胞表面受体,参与调节细胞的生长、分化和凋亡等生物学过程,且与多种疾病的发生发展有关。ACVR2A的研究有助于深入理解细胞信号传导的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Pinyol, Roser, Torrecilla, Sara, Wang, Huan, Sia, Daniela, Llovet, Josep M. 2021. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. In Journal of hepatology, 75, 865-878. doi:10.1016/j.jhep.2021.04.049. https://pubmed.ncbi.nlm.nih.gov/33992698/
2. Satheesh, P, Bhattacharya, T K, Kumar, P, Shukla, R, Dushyanth, K. 2016. Gene expression and silencing of activin receptor type 2A (ACVR2A) in myoblast cells of chicken. In British poultry science, 57, 763-770. doi:. https://pubmed.ncbi.nlm.nih.gov/27635666/
3. Wodziński, Damian, Wosiak, Agnieszka, Pietrzak, Jacek, Jeleń, Agnieszka, Balcerczak, Ewa. 2019. Does the expression of the ACVR2A gene affect the development of colorectal cancer? In Genetics and molecular biology, 42, 32-39. doi:10.1590/1678-4685-GMB-2017-0332. https://pubmed.ncbi.nlm.nih.gov/30856244/
4. Yanan, Feng, Rui, Lu, Xiaoying, Li, Xiaolei, Yuan, Litao, Sun. 2019. Association between ACVR2A gene polymorphisms and risk of hypertensive disorders of pregnancy in the northern Chinese population. In Placenta, 90, 1-8. doi:10.1016/j.placenta.2019.11.004. https://pubmed.ncbi.nlm.nih.gov/31790936/
5. Wang, Zixi, Zhu, Shijia, Jia, Yuemeng, Hoshida, Yujin, Zhu, Hao. 2023. Positive selection of somatically mutated clones identifies adaptive pathways in metabolic liver disease. In Cell, 186, 1968-1984.e20. doi:10.1016/j.cell.2023.03.014. https://pubmed.ncbi.nlm.nih.gov/37040760/
6. Glotov, Andrey S, Kazakov, Sergey V, Vashukova, Elena S, Zainullina, Marina S, Baranov, Vladislav S. 2018. Targeted sequencing analysis of ACVR2A gene identifies novel risk variants associated with preeclampsia. In The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians, 32, 2790-2796. doi:10.1080/14767058.2018.1449204. https://pubmed.ncbi.nlm.nih.gov/29506428/
7. Ihn, Hyun-Ju, Kim, Dong Hyeok, Oh, Sang-Seok, Song, Hyunkeun, Kim, Kwang Dong. 2011. Identification of Acvr2a as a Th17 cell-specific gene induced during Th17 differentiation. In Bioscience, biotechnology, and biochemistry, 75, 2138-41. doi:. https://pubmed.ncbi.nlm.nih.gov/22056434/
8. Lokki, A Inkeri, Klemetti, Miira M, Heino, Sanna, Heinonen, Seppo, Laivuori, Hannele. 2011. Association of the rs1424954 polymorphism of the ACVR2A gene with the risk of pre-eclampsia is not replicated in a Finnish study population. In BMC research notes, 4, 545. doi:10.1186/1756-0500-4-545. https://pubmed.ncbi.nlm.nih.gov/22177086/
9. Leońska-Duniec, Agata, Borczyk, Małgorzata, Korostyński, Michał, Maculewicz, Ewelina, Cięszczyk, Paweł. 2023. Genetic variants in myostatin and its receptors promote elite athlete status. In BMC genomics, 24, 761. doi:10.1186/s12864-023-09869-2. https://pubmed.ncbi.nlm.nih.gov/38082252/