Dock9(Dedicator of cytokinesis 9)是一种编码Rho家族鸟苷酸交换因子Cdc42的激活剂的基因。Cdc42是一种小GTP酶,参与调控细胞骨架重排、细胞迁移、细胞分裂和细胞粘附等细胞过程。Dock9蛋白通过激活Cdc42,参与调节细胞的这些生物学功能。
Dock9基因在多种疾病的发生和发展中发挥重要作用。例如,Dock9基因的变异与双相情感障碍的发病机制相关。在双相情感障碍患者中,Dock9基因的变异导致Cdc42活性异常,进而影响神经系统的功能和神经递质的传递,从而导致双相情感障碍的发生[3]。此外,Dock9基因的变异还与肠易激综合症(IBS)的发病机制相关。IBS是一种以腹痛、腹胀、便秘或腹泻为主要症状的慢性疾病,其发病机制涉及大脑和肠道之间的相互作用异常。研究发现,Dock9基因的变异导致大脑和肠道之间的信号传递异常,进而影响肠道的运动和分泌功能,从而导致IBS的发生[1]。
Dock9基因的变异还与角膜圆锥症(KTCN)的发病机制相关。KTCN是一种以角膜变薄、圆锥形突出和视力下降为主要特征的遗传性疾病。研究发现,Dock9基因的变异导致角膜细胞骨架重排异常,进而影响角膜的形态和功能,从而导致KTCN的发生[4,5,7]。此外,Dock9基因的变异还与其他疾病的发生和发展相关,例如甲状腺癌[2]、骨形成[6]和结核病[8]。
综上所述,Dock9基因在多种疾病的发生和发展中发挥重要作用。Dock9基因的变异导致Cdc42活性异常,进而影响细胞骨架重排、细胞迁移、细胞分裂和细胞粘附等细胞过程,从而导致多种疾病的发生。Dock9基因的研究有助于深入理解疾病的发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Eijsbouts, Chris, Zheng, Tenghao, Kennedy, Nicholas A, Jostins, Luke, Parkes, Miles. 2021. Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders. In Nature genetics, 53, 1543-1552. doi:10.1038/s41588-021-00950-8. https://pubmed.ncbi.nlm.nih.gov/34741163/
2. Chen, Dengwang, Zhao, Hongyuan, Guo, Zhanwen, He, Yuqi, Song, Tao. 2024. Identification of m6A-related lncRNAs LINC02471 and DOCK9-DT as potential biomarkers for thyroid cancer. In International immunopharmacology, 133, 112050. doi:10.1016/j.intimp.2024.112050. https://pubmed.ncbi.nlm.nih.gov/38636370/
3. Detera-Wadleigh, Sevilla D, Liu, Chun-yu, Maheshwari, Manjula, Gershon, Elliot S, McMahon, Francis J. . Sequence variation in DOCK9 and heterogeneity in bipolar disorder. In Psychiatric genetics, 17, 274-86. doi:. https://pubmed.ncbi.nlm.nih.gov/17728666/
4. Karolak, Justyna A, Rydzanicz, Malgorzata, Ginter-Matuszewska, Barbara, Bejjani, Bassem A, Gajecka, Marzena. . Variant c.2262A>C in DOCK9 Leads to Exon Skipping in Keratoconus Family. In Investigative ophthalmology & visual science, 56, 7687-90. doi:10.1167/iovs.15-17538. https://pubmed.ncbi.nlm.nih.gov/26641546/
5. Burdon, Kathryn P, Vincent, Andrea L. 2013. Insights into keratoconus from a genetic perspective. In Clinical & experimental optometry, 96, 146-54. doi:10.1111/cxo.12024. https://pubmed.ncbi.nlm.nih.gov/23387289/
6. Zhang, Xuepu, Zhang, Yue, Yang, Limin, Ban, Zhaoliang, Zhao, Haosen. 2022. IRF4 suppresses osteogenic differentiation of BM-MSCs by transcriptionally activating miR-636/DOCK9 axis. In Clinics (Sao Paulo, Brazil), 77, 100019. doi:10.1016/j.clinsp.2022.100019. https://pubmed.ncbi.nlm.nih.gov/35397366/
7. Karolak, Justyna A, Polakowski, Piotr, Szaflik, Jerzy, Szaflik, Jacek P, Gajecka, Marzena. 2014. Molecular Screening of Keratoconus Susceptibility Sequence Variants in VSX1, TGFBI, DOCK9, STK24, and IPO5 Genes in Polish Patients and Novel TGFBI Variant Identification. In Ophthalmic genetics, 37, 37-43. doi:10.3109/13816810.2014.926375. https://pubmed.ncbi.nlm.nih.gov/24940934/
8. de Araujo, Leonardo S, Vaas, Lea A I, Ribeiro-Alves, Marcelo, Pessler, Frank, Saad, Maria H F. 2016. Transcriptomic Biomarkers for Tuberculosis: Evaluation of DOCK9. EPHA4, and NPC2 mRNA Expression in Peripheral Blood. In Frontiers in microbiology, 7, 1586. doi:. https://pubmed.ncbi.nlm.nih.gov/27826286/