Qtrt1,也称为queuine tRNA-ribosyltransferase 1,是一种重要的酶,负责将肠道微生物群产生的喹啉(queuine)转化为tRNA中的喹啉修饰。喹啉修饰是一种特殊的RNA修饰,主要发生在tRNA的摆动位置,这种修饰对于维持tRNA的功能至关重要。Qtrt1的表达和活性受到肠道微生物群的影响,喹啉作为一种重要的微营养素,对于维持生物体的健康和正常生理功能具有重要作用[8]。
在哺乳动物中,Qtrt1和Qtrt2形成复合物,共同催化tRNA中喹啉的插入。喹啉的插入对于维持tRNA的正确折叠和功能至关重要。Qtrt1的缺失会导致tRNA中喹啉修饰的缺失,进而影响蛋白质的合成和细胞的功能。研究发现,Qtrt1的缺失会导致学习记忆缺陷,影响突触形成和神经元形态[1]。此外,Qtrt1的缺失还会导致肠道炎症,影响肠道上皮细胞的增殖和紧密连接的形成[2]。Qtrt1的缺失还会影响乳腺癌的发生和发展,改变肿瘤的微环境和细菌组成[3]。此外,Qtrt1的表达与肺癌的预后相关,高表达的Qtrt1预示着不良的预后[4]。
Qtrt1的缺失还会导致线粒体功能障碍,影响细胞的增殖和代谢。研究发现,Qtrt1的缺失会导致tRNA修饰的失衡,进而影响蛋白质的合成和线粒体的功能。此外,Qtrt1的缺失还会导致多种tRNA修饰的失衡,影响细胞的生长和代谢[5]。
Qtrt1的表达与多发性骨髓瘤的预后相关,高表达的Qtrt1预示着不良的预后。研究发现,Qtrt1的表达与HLA家族和免疫检查点基因的表达相关,影响免疫细胞的浸润和免疫治疗反应[6]。此外,Qtrt1的表达与慢性淋巴细胞白血病的预后相关,高表达的Qtrt1预示着需要更早的治疗[7]。
综上所述,Qtrt1是一种重要的酶,负责将肠道微生物群产生的喹啉转化为tRNA中的喹啉修饰。Qtrt1的表达和活性受到肠道微生物群的影响,喹啉作为一种重要的微营养素,对于维持生物体的健康和正常生理功能具有重要作用。Qtrt1的缺失会导致多种生理和病理变化,包括学习记忆缺陷、肠道炎症、乳腺癌、肺癌、线粒体功能障碍和多发性骨髓瘤等。Qtrt1的研究有助于深入理解tRNA修饰的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Cirzi, Cansu, Dyckow, Julia, Legrand, Carine, Lyko, Frank, Tuorto, Francesca. 2023. Queuosine-tRNA promotes sex-dependent learning and memory formation by maintaining codon-biased translation elongation speed. In The EMBO journal, 42, e112507. doi:10.15252/embj.2022112507. https://pubmed.ncbi.nlm.nih.gov/37609797/
2. Zhang, Jilei, Zhang, Yongguo, McGrenaghan, Callum J, Xia, Yinglin, Sun, Jun. 2023. Disruption to tRNA Modification by Queuine Contributes to Inflammatory Bowel Disease. In Cellular and molecular gastroenterology and hepatology, 15, 1371-1389. doi:10.1016/j.jcmgh.2023.02.006. https://pubmed.ncbi.nlm.nih.gov/36801450/
3. Zhang, Jilei, Lu, Rong, Zhang, Yongguo, Pan, Tao, Sun, Jun. 2020. tRNA Queuosine Modification Enzyme Modulates the Growth and Microbiome Recruitment to Breast Tumors. In Cancers, 12, . doi:10.3390/cancers12030628. https://pubmed.ncbi.nlm.nih.gov/32182756/
4. Ma, Qianli, He, Jie. . Enhanced expression of queuine tRNA-ribosyltransferase 1 (QTRT1) predicts poor prognosis in lung adenocarcinoma. In Annals of translational medicine, 8, 1658. doi:10.21037/atm-20-7424. https://pubmed.ncbi.nlm.nih.gov/33490170/
5. Rashad, Sherif, Al-Mesitef, Shadi, Mousa, Abdulrahman, Dedon, Peter C, Niizuma, Kuniyasu. 2024. Translational response to mitochondrial stresses is orchestrated by tRNA modifications. In bioRxiv : the preprint server for biology, , . doi:10.1101/2024.02.14.580389. https://pubmed.ncbi.nlm.nih.gov/38405984/
6. Yu, Zhengyu, Qiu, Bingquan, Li, Linfeng, Zhou, Hui, Niu, Ting. 2022. An emerging prognosis prediction model for multiple myeloma: Hypoxia-immune related microenvironmental gene signature. In Frontiers in oncology, 12, 992387. doi:10.3389/fonc.2022.992387. https://pubmed.ncbi.nlm.nih.gov/36110952/
7. Morabito, Fortunato, Adornetto, Carlo, Monti, Paola, Gentile, Massimo, Greco, Gianluigi. 2023. Genes selection using deep learning and explainable artificial intelligence for chronic lymphocytic leukemia predicting the need and time to therapy. In Frontiers in oncology, 13, 1198992. doi:10.3389/fonc.2023.1198992. https://pubmed.ncbi.nlm.nih.gov/37719021/
8. Zallot, Rémi, Brochier-Armanet, Céline, Gaston, Kirk W, Hunt, John F, de Crécy-Lagard, Valérie. 2014. Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family. In ACS chemical biology, 9, 1812-25. doi:10.1021/cb500278k. https://pubmed.ncbi.nlm.nih.gov/24911101/