Gucy1a1基因编码可溶性鸟苷酸环化酶(sGC)的可溶性α1亚基。sGC是一种关键酶,负责将三磷酸鸟苷(GTP)转化为环状鸟苷单磷酸(cGMP)。cGMP在细胞内信号传导中扮演着重要角色,参与调节血管舒缩、血小板聚集、神经传导和许多其他生理过程。Gucy1a1基因的突变或表达异常与多种疾病相关,包括心血管疾病、癌症和高血压。
在心血管疾病方面,Gucy1a1基因的多态性与冠状动脉疾病(CAD)风险增加相关[7]。研究发现,Gucy1a1基因的突变会导致sGC活性降低,从而影响血管舒缩和血小板功能,增加血栓形成的风险,进而促进动脉粥样硬化斑块的形成和血管炎症[4]。此外,Gucy1a1基因的多态性还与不稳定型心绞痛的风险增加相关[1]。研究发现,Gucy1a1基因的rs7692387多态性在年龄大于55岁的患者中与不稳定型心绞痛风险增加相关,而SELL基因的rs2205849和rs2229569多态性则与年龄小于55岁的患者中不稳定型心绞痛风险增加相关[1]。
在癌症方面,Gucy1a1基因的表达异常与膀胱癌、结直肠癌和胃癌的发生和发展相关。研究发现,Gucy1a1基因的表达水平在膀胱癌患者的纤维母细胞中显著升高,这些细胞通过分泌CXCL12促进肿瘤生长[2]。在结直肠癌中,Gucy1a1基因的表达水平与肿瘤的发生和预后相关,且Gucy1a1基因的多态性可能影响免疫治疗的疗效[3]。此外,Gucy1a1基因的表达水平在EMT型胃癌中显著升高,且与不良预后相关[6]。
在高血压方面,Gucy1a1基因的多态性与高血压风险增加相关[7]。研究发现,Gucy1a1基因的突变会导致sGC活性降低,从而影响血管舒缩和血压调节。此外,研究发现,酵母水解物中的ACE抑制肽可以上调Gucy1a1基因的表达,从而降低血压[5]。
综上所述,Gucy1a1基因在心血管疾病、癌症和高血压等多种疾病中发挥重要作用。Gucy1a1基因的突变、多态性和表达异常与疾病的发生和发展相关。因此,Gucy1a1基因的研究对于深入理解疾病的发病机制和开发新的治疗方法具有重要意义。
参考文献:
1. Malinowski, Damian, Zawadzka, Magda, Safranow, Krzysztof, Droździk, Marek, Pawlik, Andrzej. 2022. SELL and GUCY1A1 Gene Polymorphisms in Patients with Unstable Angina. In Biomedicines, 10, . doi:10.3390/biomedicines10102494. https://pubmed.ncbi.nlm.nih.gov/36289756/
2. Meguro, Satoru, Johmura, Yoshikazu, Wang, Teh-Wei, Kojima, Yoshiyuki, Nakanishi, Makoto. 2024. Preexisting senescent fibroblasts in the aged bladder create a tumor-permissive niche through CXCL12 secretion. In Nature aging, 4, 1582-1597. doi:10.1038/s43587-024-00704-1. https://pubmed.ncbi.nlm.nih.gov/39251867/
3. Liu, Hui, Zhang, Yuexin, Zhang, Quanzheng, Zhang, Tongtong, Lu, Tianqi. . Metabolism-Related Prognostic Biomarkers, Purine Metabolism and Anti-Tumor Immunity in Colon Adenocarcinoma. In Frontiers in bioscience (Landmark edition), 28, 328. doi:10.31083/j.fbl2812328. https://pubmed.ncbi.nlm.nih.gov/38179743/
4. Mauersberger, Carina, Sager, Hendrik B, Wobst, Jana, Schunkert, Heribert, Kessler, Thorsten. 2022. Loss of soluble guanylyl cyclase in platelets contributes to atherosclerotic plaque formation and vascular inflammation. In Nature cardiovascular research, 1, 1174-1186. doi:10.1038/s44161-022-00175-w. https://pubmed.ncbi.nlm.nih.gov/37484062/
5. Huang, Yanbo, Jia, Feng, Zhao, Jinsong, Hou, Yi, Hu, Song-Qing. 2021. Novel ACE Inhibitory Peptides Derived from Yeast Hydrolysates: Screening, Inhibition Mechanisms and Effects on HUVECs. In Journal of agricultural and food chemistry, 69, 2412-2421. doi:10.1021/acs.jafc.0c06053. https://pubmed.ncbi.nlm.nih.gov/33593053/
6. Sadeghi, Mehdi, Karimi, Mohammad Reza, Karimi, Amir Hossein, Barzegar, Abolfazl, Schmitz, Ulf. 2023. Network-Based and Machine-Learning Approaches Identify Diagnostic and Prognostic Models for EMT-Type Gastric Tumors. In Genes, 14, . doi:10.3390/genes14030750. https://pubmed.ncbi.nlm.nih.gov/36981021/
7. Curtis, David. 2023. Analysis of Rare Variants in 470,000 Exome-Sequenced UK Biobank Participants Implicates Novel Genes Affecting Risk of Hypertension. In Pulse (Basel, Switzerland), 11, 9-16. doi:10.1159/000535157. https://pubmed.ncbi.nlm.nih.gov/38090255/