推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Acvr1cem1flox/Cya 条件性基因敲除小鼠
复苏/繁育服务
产品名称:
Acvr1c-flox
产品编号:
S-CKO-09777
品系背景:
C57BL/6JCya
小鼠资源库
* 使用本品系发表的文献需注明:Acvr1c-flox mice (Strain S-CKO-09777) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Acvr1cem1flox/Cya
品系编号
CKOCMP-269275-Acvr1c-B6J-VA
产品编号
S-CKO-09777
基因名
Acvr1c
品系背景
C57BL/6JCya
基因别称
ALK7;Alk-7;ACTR-IC;ACVRLK7;C230097P10
NCBI号
修饰方式
条件性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:2661081 Mice homozygous for a knock-out allele are viable, fertile, and overtly normal with no apparent left-right patterning abnormalities or organogenesis defects.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
在研小鼠
环境标准
SPF
供应地区
中国
品系详情
Acvr1c位于小鼠的2号染色体,采用基因编辑技术,通过高通量电转受精卵方式,获得Acvr1c基因条件性敲除小鼠,性成熟后取精子冻存。
Acvr1c-flox小鼠模型是由赛业生物(Cyagen)采用基因编辑技术构建的条件性基因敲除小鼠。Acvr1c基因位于小鼠2号染色体上,由9个外显子组成,其中ATG起始密码子在1号外显子,TAG终止密码子在9号外显子。条件性敲除区域(cKO区域)位于第5号和6号外显子,包含约2111个碱基对的编码序列。删除该区域会导致小鼠Acvr1c基因功能的丧失。 Acvr1c-flox小鼠模型的构建过程包括将核糖核蛋白(RNP)和靶向载体共同注入受精卵。随后,对出生的小鼠进行PCR和测序分析进行基因型鉴定。携带敲除等位基因的小鼠是可存活的、可育的,并且在外观上正常,没有明显的左右对称性异常或器官发生缺陷。 该模型可用于研究Acvr1c基因在小鼠体内的功能。由于生物过程的复杂性,所有关于loxP插入对基因转录、RNA剪接和蛋白质翻译的影响的风险,在现有技术水平上无法预测。
基因研究概述
Acvr1c,即Activin受体样激酶7(ALK7),是转化生长因子β(TGF-β)超家族受体之一。TGF-β超家族成员包括转化生长因子βs、活化素s、抑制素s和骨形态发生蛋白s,这些因子在细胞增殖、分化和发育中发挥重要作用。Acvr1c在脂肪细胞和胰岛β细胞中表达,参与调节脂肪分布和葡萄糖稳态。
在肥胖和代谢性疾病的研究中,Acvr1c受到广泛关注。研究发现,Acvr1c的基因变异与身体脂肪分布相关,其中一些变异与较低的腰臀比和较低的2型糖尿病风险相关[5]。例如,Acvr1c的N150H、I195T和I482V变异与抵抗高脂肪饮食诱导的肥胖相关,并增加脂肪组织中的脂肪分解[4]。这些发现表明,Acvr1c可能是肥胖和相关代谢性疾病的治疗靶点。
Acvr1c的信号通路主要通过激活SMAD2/3信号通路发挥作用。激活素E(activin E)是一种肝源性激素,通过与Acvr1c结合激活SMAD2/3信号通路,抑制脂肪分解并促进脂肪积累[1]。Acvr1c的突变或缺失会导致脂肪分解增加,脂肪量减少,并改善脂肪组织功能[4]。此外,Acvr1c还参与调节其他生物学过程,如脑转移和认知功能。研究发现,Acvr1c的表达与结直肠癌脑转移相关,且Acvr1c的表达水平与脑转移的发生风险相关[2]。此外,Acvr1c在记忆形成中发挥重要作用,其表达受损与认知障碍相关[3]。
综上所述,Acvr1c在脂肪分布、代谢性疾病、脑转移和认知功能中发挥重要作用。Acvr1c的信号通路主要通过激活SMAD2/3信号通路发挥作用,调节脂肪分解和脂肪积累。Acvr1c的基因变异与身体脂肪分布相关,且一些变异与较低的2型糖尿病风险相关。此外,Acvr1c还参与调节其他生物学过程,如脑转移和认知功能。这些发现为肥胖和相关代谢性疾病的治疗提供了新的思路和策略。
参考文献:
1. Adam, Rene C, Pryce, Dwaine S, Lee, Joseph S, Sleeman, Mark W, Gusarova, Viktoria. 2023. Activin E-ACVR1C cross talk controls energy storage via suppression of adipose lipolysis in mice. In Proceedings of the National Academy of Sciences of the United States of America, 120, e2309967120. doi:10.1073/pnas.2309967120. https://pubmed.ncbi.nlm.nih.gov/37523551/
2. Michl, Marlies, Taverna, Francesco, Woischke, Christine, Kumbrink, Jörg, Neumann, Jens. 2024. Identification of a gene expression signature associated with brain metastasis in colorectal cancer. In Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 26, 1886-1895. doi:10.1007/s12094-024-03408-5. https://pubmed.ncbi.nlm.nih.gov/38558282/
3. Keiser, Ashley A, Dong, Tri N, Kramár, Enikö A, Cotman, Carl W, Wood, Marcelo A. 2024. Specific exercise patterns generate an epigenetic molecular memory window that drives long-term memory formation and identifies ACVR1C as a bidirectional regulator of memory in mice. In Nature communications, 15, 3836. doi:10.1038/s41467-024-47996-w. https://pubmed.ncbi.nlm.nih.gov/38714691/
4. Tangseefa, Pawanrat, Jin, Hong, Zhang, Houyu, Xie, Meng, Ibáñez, Carlos F. 2024. Human ACVR1C missense variants that correlate with altered body fat distribution produce metabolic alterations of graded severity in knock-in mutant mice. In Molecular metabolism, 81, 101890. doi:10.1016/j.molmet.2024.101890. https://pubmed.ncbi.nlm.nih.gov/38307384/
5. Emdin, Connor A, Khera, Amit V, Aragam, Krishna, Gabriel, Stacey, Kathiresan, Sekar. 2018. DNA Sequence Variation in ACVR1C Encoding the Activin Receptor-Like Kinase 7 Influences Body Fat Distribution and Protects Against Type 2 Diabetes. In Diabetes, 68, 226-234. doi:10.2337/db18-0857. https://pubmed.ncbi.nlm.nih.gov/30389748/