LACTB2,也称为β-内酰胺酶样蛋白2,是一种在哺乳动物线粒体中发现的金属β-内酰胺酶蛋白。LACTB2的功能研究揭示了其在细胞代谢和信号传导中的重要作用,特别是在线粒体功能和RNA代谢方面。LACTB2具有内切核糖核酸酶活性,能够切割单链RNA,从而影响线粒体基因的表达和调控。在哺乳动物细胞中,LACTB2的表达水平与细胞形态、细胞死亡以及线粒体功能密切相关。LACTB2通过参与RNA代谢,调控线粒体基因的表达,进而影响细胞的能量代谢和细胞信号传导。
LACTB2在多种疾病中发挥重要作用。在鼻咽癌中,LACTB2的表达水平升高,并激活PINK1/Parkin依赖性线粒体自噬,从而促进放疗抗性[1]。在阿尔茨海默病中,LACTB2被确定为新的候选基因,与疾病风险相关[2]。在结直肠癌中,LACTB2的表达水平升高,并调节氧化磷酸化和mTORC1信号通路,从而促进肿瘤的发生和发展[3]。此外,LACTB2的基因融合与结直肠癌的发生和发展密切相关[4]。LACTB2的表达水平与神经退行性疾病的风险相关,如阿尔茨海默病和帕金森病[5]。在心力衰竭中,LACTB2的表达水平与免疫细胞浸润相关,可能作为疾病的诊断标志物[6]。LACTB2的表达水平与红细胞中的镉浓度相关,可能与镉的吸收和代谢相关[7]。在尼罗罗非鱼中,LACTB2被确定为与耐盐性相关的基因之一[8]。在男性不育症中,LACTB2的基因结构改变可能影响精子的发生[9]。
综上所述,LACTB2是一种重要的金属β-内酰胺酶蛋白,参与调控线粒体功能和RNA代谢。LACTB2在多种疾病中发挥重要作用,包括鼻咽癌、阿尔茨海默病、结直肠癌、神经退行性疾病、心力衰竭、镉中毒、耐盐性和男性不育症。LACTB2的研究有助于深入理解线粒体功能和RNA代谢的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Chen, Qianping, Zheng, Wang, Zhu, Lin, Guan, Jian, Shao, Chunlin. 2021. LACTB2 renders radioresistance by activating PINK1/Parkin-dependent mitophagy in nasopharyngeal carcinoma. In Cancer letters, 518, 127-139. doi:10.1016/j.canlet.2021.07.019. https://pubmed.ncbi.nlm.nih.gov/34271102/
2. Harwood, Janet C, Leonenko, Ganna, Sims, Rebecca, Williams, Julie, Holmans, Peter. 2021. Defining functional variants associated with Alzheimer's disease in the induced immune response. In Brain communications, 3, fcab083. doi:10.1093/braincomms/fcab083. https://pubmed.ncbi.nlm.nih.gov/33959712/
3. Li, Hui, Wen, Jia-Ying, Liu, Cui-Zhen, Liu, Li-Min, Song, Rui. 2024. Increased LACTB2 Expression Regulates Oxidative Phosphorylation and mTORC1 Signaling of Colorectal Cancer. In Molecular biotechnology, 67, 1539-1555. doi:10.1007/s12033-024-01137-2. https://pubmed.ncbi.nlm.nih.gov/38664305/
4. Yu, J, Wu, W K K, Liang, Q, Ng, S S M, Sung, J J Y. 2015. Disruption of NCOA2 by recurrent fusion with LACTB2 in colorectal cancer. In Oncogene, 35, 187-95. doi:10.1038/onc.2015.72. https://pubmed.ncbi.nlm.nih.gov/25823027/
5. Wang, Zheyi, Sun, Yize, Bai, Zetai, Kong, Deyuan, Wu, Guanzhao. 2025. Mitochondria-Related Genome-Wide Mendelian Randomization Identifies Putatively Causal Genes for Neurodegenerative Diseases. In Movement disorders : official journal of the Movement Disorder Society, , . doi:10.1002/mds.30123. https://pubmed.ncbi.nlm.nih.gov/39838927/
6. Wu, Zelan, Liu, Wupeng, Si, Xiaoyun, Liang, Jinfeng. 2024. Screening of key genes related to M6A methylation in patients with heart failure. In BMC cardiovascular disorders, 24, 565. doi:10.1186/s12872-024-04228-9. https://pubmed.ncbi.nlm.nih.gov/39415091/
7. Borné, Yan, Söderholm, Martin, Barregard, Lars, Hedblad, Bo, Engström, Gunnar. 2016. Genome wide association study identifies two loci associated with cadmium in erythrocytes among never-smokers. In Human molecular genetics, 25, 2342-2348. doi:. https://pubmed.ncbi.nlm.nih.gov/27005419/
8. Gu, Xiao Hui, Jiang, Dan Li, Huang, Yan, Lin, Hao Ran, Xia, Jun Hong. 2018. Identifying a Major QTL Associated with Salinity Tolerance in Nile Tilapia Using QTL-Seq. In Marine biotechnology (New York, N.Y.), 20, 98-107. doi:10.1007/s10126-017-9790-4. https://pubmed.ncbi.nlm.nih.gov/29318417/
9. Yammine, T, Reynaud, N, Lejeune, H, Chouery, E, Schluth-Bolard, C. . Deciphering balanced translocations in infertile males by next-generation sequencing to identify candidate genes for spermatogenesis disorders. In Molecular human reproduction, 27, . doi:10.1093/molehr/gaab034. https://pubmed.ncbi.nlm.nih.gov/34009290/