推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Aurkaem1flox/Cya 条件性基因敲除小鼠
复苏/繁育服务
产品名称:
Aurka-flox
产品编号:
S-CKO-05380
品系背景:
C57BL/6JCya
小鼠资源库
* 使用本品系发表的文献需注明:Aurka-flox mice (Strain S-CKO-05380) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Aurkaem1flox/Cya
品系编号
CKOCMP-20878-Aurka-B6J-VA
产品编号
S-CKO-05380
基因名
Aurka
品系背景
C57BL/6JCya
基因别称
IAK;Ark1;Ayk1;IAK1;Stk6;AIRK1;ARK-1;Aurora-A
NCBI号
修饰方式
条件性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:894678 Mice homozygous for a null allele display embryonic lethality before implantation, early embryonic growth arrest, and impaired mitosis. Heterozygous null mice display increased incidence of tumors primarily lymphomas and chromosomal instability.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
Aurka位于小鼠的2号染色体,采用基因编辑技术,通过高通量电转受精卵方式,获得Aurka基因条件性敲除小鼠,性成熟后取精子冻存。
Aurka-flox小鼠模型是由赛业生物(Cyagen)采用基因编辑技术构建的条件性敲除小鼠。Aurka基因位于小鼠2号染色体上,由9个外显子组成,其中ATG起始密码子在1号外显子,TAG终止密码子在9号外显子。条件性敲除区域(cKO区域)位于3号外显子,包含250个碱基对的编码序列。删除该区域会导致小鼠Aurka基因功能的丧失。 Aurka-flox小鼠模型的构建过程包括将核糖核蛋白(RNP)和靶向载体共同注入受精卵。随后,对出生的小鼠进行PCR和测序分析进行基因型鉴定。携带敲除等位基因的小鼠表现为胚胎致死性,胚胎生长停滞,细胞分裂受损。杂合子小鼠则表现出肿瘤发生率的增加,主要是淋巴瘤和染色体不稳定性。敲除3号外显子会导致基因移码,覆盖了编码区域的19.98%。5'-loxP位点插入的2号内含子大小为1814个碱基对,3'-loxP位点插入的3号内含子大小为2425个碱基对。有效的cKO区域大小约为1.4千碱基对。 该小鼠模型可用于研究Aurka基因在小鼠体内的功能,特别是在胚胎发育、细胞分裂和肿瘤发生中的作用。此外,由于生物过程的复杂性,现有的技术无法预测loxP插入对基因转录、RNA剪接和蛋白质翻译的影响,因此在构建和使用该模型时应谨慎。
基因研究概述
Aurora A(AURKA)是一种丝氨酸/苏氨酸激酶,是Aurora激酶家族的成员之一。Aurora激酶家族包括Aurora A、Aurora B和Aurora C三种激酶,它们在细胞周期调控中发挥着关键作用。Aurora A主要参与细胞周期的G2/M转换和有丝分裂,通过磷酸化下游底物来调节细胞的基本过程。AURKA位于染色体20上,在许多人类癌症中,如乳腺癌,其基因被扩增或过表达。AURKA不仅存在于细胞质中,还能进入细胞核,在核内与其他转录因子,如FoxM1、C-Myc和NF-κB等协同作用,促进癌基因的转录和表达,维持致癌信号,如N-Myc和Wnt信号。此外,AURKA还在控制癌症的增殖、侵袭、细胞周期调节和癌症干细胞的自我更新中发挥着重要作用。
AURKA在多种肿瘤中发挥着致癌作用,如脑膜瘤、头颈鳞状细胞癌(HNSCC)、肝细胞癌(HCC)和神经内分泌前列腺癌等。例如,在脑膜瘤中,AURKA表达上调,增强其恶性特征,并通过与kelch样ECH关联蛋白1(KEAP1)直接相互作用和磷酸化,激活核因子红细胞2相关因子2(NFE2L2/NRF2)及其靶基因的转录,从而抑制erastin诱导的铁死亡。在HNSCC中,AURKA表达上调,与铜死亡和铁死亡相关,且AURKA表达升高与HNSCC患者的预后不良相关。此外,AURKA在细胞核内还具有非激酶活性,如通过调节RNA剪接和染色质修饰等方式影响基因表达。
目前,针对AURKA的抑制剂已被开发,并在临床试验中评估。然而,患者对AURKA抑制剂的总体反应率并不理想,这提示我们关注AURKA的非激酶活性。最近的研究表明,AURKA的核功能及其非激酶活性可能是抗癌治疗的潜在靶点。例如,在神经内分泌前列腺癌中,趋化因子受体CXCR7激活AURKA,促进肿瘤生长,而AURKA抑制剂可以减轻这一作用。在胰腺癌中,AURKA抑制剂CCT137690可以诱导坏死样细胞死亡,并减缓肿瘤生长。
总之,AURKA作为一种重要的丝氨酸/苏氨酸激酶,在细胞周期调控和肿瘤发生中发挥着关键作用。AURKA在多种肿瘤中表达上调,具有致癌作用,并且具有非激酶活性。针对AURKA的抑制剂已在临床试验中评估,但患者对其反应率有限。进一步研究AURKA的核功能和非激酶活性,有助于我们更深入地了解AURKA在肿瘤发生中的作用机制,为开发更有效的抗癌治疗策略提供理论基础[1,2,3,4,5,6,7,8,9,10]。
参考文献:
1. Ye, Yangfan, Xu, Lei, Zhang, Liuchao, Tu, Yiming, Ji, Jing. 2024. Meningioma achieves malignancy and erastin-induced ferroptosis resistance through FOXM1-AURKA-NRF2 axis. In Redox biology, 72, 103137. doi:10.1016/j.redox.2024.103137. https://pubmed.ncbi.nlm.nih.gov/38642502/
2. Jia, Xiao, Tian, Jiao, Fu, Yueyue, Yang, Cheng, Liu, Yijin. 2024. Identification of AURKA as a Biomarker Associated with Cuproptosis and Ferroptosis in HNSCC. In International journal of molecular sciences, 25, . doi:10.3390/ijms25084372. https://pubmed.ncbi.nlm.nih.gov/38673957/
3. Chen, Menghua, Zhu, Huijun, Li, Jian, Liu, Wenqi, Wang, Jue. 2024. Research progress on the relationship between AURKA and tumorigenesis: the neglected nuclear function of AURKA. In Annals of medicine, 56, 2282184. doi:10.1080/07853890.2023.2282184. https://pubmed.ncbi.nlm.nih.gov/38738386/
4. Yan, Min, Wang, Chunli, He, Bin, Jin, Bilian, Liu, Quentin. 2016. Aurora-A Kinase: A Potent Oncogene and Target for Cancer Therapy. In Medicinal research reviews, 36, 1036-1079. doi:10.1002/med.21399. https://pubmed.ncbi.nlm.nih.gov/27406026/
5. Farid, Ann Abd-Almonem, Afify, Nermin Abd-Almaksoud, Alsharnoby, Aml Abd-Alhamid, Abdelsameea, Eman, Bedair, Hanan M. 2021. Predictive Role of AURKA rs 1047972 Gene Polymorphism and the Risk of Development of Hepatocellular Carcinoma. In Immunological investigations, 51, 1211-1221. doi:10.1080/08820139.2021.1920609. https://pubmed.ncbi.nlm.nih.gov/34018460/
6. Gritsina, Galina, Fong, Ka-Wing, Lu, Xiaodong, Hussain, Maha, Yu, Jindan. 2023. Chemokine receptor CXCR7 activates Aurora Kinase A and promotes neuroendocrine prostate cancer growth. In The Journal of clinical investigation, 133, . doi:10.1172/JCI166248. https://pubmed.ncbi.nlm.nih.gov/37347559/
7. Xie, Yangchun, Zhu, Shan, Zhong, Meizuo, Kang, Rui, Tang, Daolin. 2017. Inhibition of Aurora Kinase A Induces Necroptosis in Pancreatic Carcinoma. In Gastroenterology, 153, 1429-1443.e5. doi:10.1053/j.gastro.2017.07.036. https://pubmed.ncbi.nlm.nih.gov/28764929/
8. Fuentes-Antrás, Jesús, Bedard, Philippe L, Cescon, David W. . Seize the engine: Emerging cell cycle targets in breast cancer. In Clinical and translational medicine, 14, e1544. doi:10.1002/ctm2.1544. https://pubmed.ncbi.nlm.nih.gov/38264947/
9. Wang, Xiaobo, Huang, Jing, Liu, Fenglin, Zhang, Yuanyuan, Dang, Yongjun. 2023. Aurora A kinase inhibition compromises its antitumor efficacy by elevating PD-L1 expression. In The Journal of clinical investigation, 133, . doi:10.1172/JCI161929. https://pubmed.ncbi.nlm.nih.gov/36928177/
10. Li, SiSi, Qi, YangFan, Yu, JiaChuan, Wang, Yang, Liu, Quentin. 2022. Nuclear Aurora kinase A switches m6A reader YTHDC1 to enhance an oncogenic RNA splicing of tumor suppressor RBM4. In Signal transduction and targeted therapy, 7, 97. doi:10.1038/s41392-022-00905-3. https://pubmed.ncbi.nlm.nih.gov/35361747/