基因Slc16a7,也称为Monocarboxylate Transporter 2 (MCT2),是SLC16基因家族的成员之一。SLC16基因家族共有十四个成员,其中SLC16A1、SLC16A3、SLC16A7和SLC16A8编码单羧酸转运蛋白,催化如L-乳酸、丙酮酸和酮体等单羧酸在细胞膜上的质子偶联转运。SLC16A7主要在心肌、骨骼肌和脑组织中表达,参与能量代谢和葡萄糖新生等代谢途径。此外,SLC16A7在T淋巴细胞活化和药物转运中也发挥着重要作用。研究发现,SLC16A7在前列腺癌、骨关节炎、鼻咽癌等疾病中存在异常表达,可能与疾病的发病机制相关。
研究表明,SLC16A7在鸡肌肉组织中促进三酰甘油沉积,通过从头脂肪生成(DNL)发挥作用[1]。此外,SLC16A7在乳腺癌细胞中高表达,并与脑转移相关。乳腺癌细胞分泌的miR-199b-5p可以靶向SLC16A7,从而劫持神经元-星形胶质细胞代谢耦合,促进脑转移的发生[2]。在前列腺癌中,SLC16A7的过表达与疾病的发生发展密切相关。研究发现,SLC16A7的启动子区存在选择性去甲基化现象,导致MCT2蛋白的过表达,影响细胞信号传导和表型[3]。此外,SLC16A7在骨关节炎中也存在异常表达,可能与疾病的发病机制相关[4]。在胃癌中,SLC16A7的表达与患者的预后和免疫治疗反应相关。研究发现,SLC16A7可以促进PD-L1的表达,从而促进肿瘤细胞的免疫逃逸[5]。在鼻咽癌中,SLC16A7的表达与患者的预后相关。研究发现,SLC16A7是鼻咽癌的潜在生物标志物和治疗靶点[7]。在哺乳动物胚胎发育过程中,SLC16A7的表达受葡萄糖剥夺、氧化应激和过氧化物酶体增殖激活受体α(PPARA)的影响[6]。此外,SLC16A7在精子发生过程中也发挥着重要作用,其表达受热应激的影响[8]。
综上所述,基因Slc16a7(MCT2)在多种生物学过程中发挥着重要作用,包括能量代谢、葡萄糖新生、T淋巴细胞活化、药物转运等。SLC16A7在多种疾病中存在异常表达,如前列腺癌、骨关节炎、鼻咽癌等,可能与疾病的发病机制相关。因此,SLC16A7有望成为疾病诊断、治疗和预后评估的潜在生物标志物和治疗靶点。
参考文献:
1. Wang, Yongli, Liu, Lu, Liu, Xiaojing, Cui, Huanxian, Wen, Jie. 2022. SLC16A7 Promotes Triglyceride Deposition by De Novo Lipogenesis in Chicken Muscle Tissue. In Biology, 11, . doi:10.3390/biology11111547. https://pubmed.ncbi.nlm.nih.gov/36358250/
2. Ruan, Xianhui, Yan, Wei, Cao, Minghui, Hevner, Robert F, Wang, Shizhen Emily. 2024. Breast cancer cell-secreted miR-199b-5p hijacks neurometabolic coupling to promote brain metastasis. In Nature communications, 15, 4549. doi:10.1038/s41467-024-48740-0. https://pubmed.ncbi.nlm.nih.gov/38811525/
3. Pertega-Gomes, Nelma, Vizcaino, Jose R, Felisbino, Sergio, Neal, David E, Massie, Charles E. . Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer. In Oncotarget, 6, 21675-84. doi:. https://pubmed.ncbi.nlm.nih.gov/26035357/
4. Xu, Lanwei, Wang, Zheng, Wang, Gang. 2024. Screening of Biomarkers Associated with Osteoarthritis Aging Genes and Immune Correlation Studies. In International journal of general medicine, 17, 205-224. doi:10.2147/IJGM.S447035. https://pubmed.ncbi.nlm.nih.gov/38268862/
5. Sun, Xuezeng, Dong, Haifeng, Su, Rishun, Yin, Songcheng, Zhang, Changhua. 2024. Lactylation-related gene signature accurately predicts prognosis and immunotherapy response in gastric cancer. In Frontiers in oncology, 14, 1485580. doi:10.3389/fonc.2024.1485580. https://pubmed.ncbi.nlm.nih.gov/39669362/
6. Jansen, Sarah, Cashman, Kara, Thompson, Jeremy G, Pantaleon, Marie, Kaye, Peter L. 2009. Glucose deprivation, oxidative stress and peroxisome proliferator-activated receptor-alpha (PPARA) cause peroxisome proliferation in preimplantation mouse embryos. In Reproduction (Cambridge, England), 138, 493-505. doi:10.1530/REP-09-0038. https://pubmed.ncbi.nlm.nih.gov/19531609/
7. Dai, Yongmei, Chen, Wenhan, Huang, Junpeng, Jiang, Guicheng, Huang, Chen. 2022. Identification of key pathways and genes in nasopharyngeal carcinoma based on WGCNA. In Auris, nasus, larynx, 50, 126-133. doi:10.1016/j.anl.2022.05.013. https://pubmed.ncbi.nlm.nih.gov/35659152/
8. Yadav, Santosh K, Pandey, Aastha, Kumar, Lokesh, Rajender, Singh, Gupta, Gopal. 2018. The thermo-sensitive gene expression signatures of spermatogenesis. In Reproductive biology and endocrinology : RB&E, 16, 56. doi:10.1186/s12958-018-0372-8. https://pubmed.ncbi.nlm.nih.gov/29859541/