ST6GalNAC3(也称为ST6GalNAcIII)是一种唾液酸转移酶,属于ST6GalNAc家族,参与糖基化过程。糖基化是一种重要的蛋白质翻译后修饰,广泛存在于哺乳动物细胞中,对蛋白质的结构和功能有重要影响。ST6GalNAC3主要在神经系统和免疫系统表达,参与细胞识别、信号转导、免疫应答等生物学过程。
ST6GalNAC3在多种疾病中发挥重要作用,包括前列腺癌、结直肠癌、膀胱癌和肝细胞癌。研究表明,ST6GalNAC3的表达水平与肿瘤的发生、发展和预后密切相关。例如,在前列腺癌中,ST6GalNAC3的启动子高甲基化与肿瘤的发生和预后不良相关[1]。在结直肠癌中,ST6GalNAC3的表达上调与肿瘤的侵袭和转移相关[3]。在膀胱癌中,ST6GalNAC3的表达上调与肿瘤的发生和预后不良相关[5]。在肝细胞癌中,ST6GalNAC3的表达下调与肿瘤的发生和预后不良相关[7]。
此外,ST6GalNAC3还与免疫系统的功能相关。例如,在急性冠脉综合征患者中,ST6GalNAC3的表达下调与免疫细胞黏附和炎症反应相关[4]。在膀胱癌中,ST6GalNAC3的表达上调与免疫细胞浸润和免疫检查点表达相关[5]。这些研究表明,ST6GalNAC3可能通过影响免疫系统的功能参与肿瘤的发生和发展。
ST6GalNAC3还与神经系统疾病相关。例如,研究表明,ST6GalNAC3的表达水平与人类脑电图的θ波和α波功率变异相关[6]。这表明ST6GalNAC3可能通过影响神经元的电生理活动参与神经系统疾病的发生和发展。
此外,ST6GalNAC3还与动物行为相关。例如,研究发现,ST6GalNAC3在高度镜像攻击性斑马鱼中的表达上调,表明ST6GalNAC3可能参与调节动物的行为[2]。
综上所述,ST6GalNAC3是一种重要的唾液酸转移酶,参与糖基化过程,对蛋白质的结构和功能有重要影响。ST6GalNAC3在多种疾病中发挥重要作用,包括前列腺癌、结直肠癌、膀胱癌和肝细胞癌。此外,ST6GalNAC3还与免疫系统的功能、神经系统疾病和动物行为相关。ST6GalNAC3的研究有助于深入理解糖基化过程的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Haldrup, Christa, Pedersen, Anne L, Øgaard, Nadia, Ørntoft, Torben F, Sørensen, Karina D. 2018. Biomarker potential of ST6GALNAC3 and ZNF660 promoter hypermethylation in prostate cancer tissue and liquid biopsies. In Molecular oncology, 12, 545-560. doi:10.1002/1878-0261.12183. https://pubmed.ncbi.nlm.nih.gov/29465788/
2. Reichmann, Florian, Pilic, Johannes, Trajanoski, Slave, Norton, William H J. 2022. Transcriptomic underpinnings of high and low mirror aggression zebrafish behaviours. In BMC biology, 20, 97. doi:10.1186/s12915-022-01298-z. https://pubmed.ncbi.nlm.nih.gov/35501893/
3. Dai, Jing, Li, Qiqing, Quan, Jun, Liu, Juan, Gao, Kai. 2023. Construction of a lipid metabolism-related and immune-associated prognostic score for gastric cancer. In BMC medical genomics, 16, 93. doi:10.1186/s12920-023-01515-w. https://pubmed.ncbi.nlm.nih.gov/37138287/
4. Hadžibegović, Irzal, Vrselja, Zvonimir, Lauc, Gordan, Curić, Goran. 2014. Expression of leukocyte adhesion-related glycosyltransferase genes in acute coronary syndrome patients. In Inflammation research : official journal of the European Histamine Research Society ... [et al.], 63, 629-36. doi:10.1007/s00011-014-0735-3. https://pubmed.ncbi.nlm.nih.gov/24748045/
5. Li, Weiping, Zuo, Kangwei, Zhao, Qi, Liu, Cheng, Jing, Suoshi. 2024. An 11-gene glycosyltransferases-related model for the prognosis of patients with bladder urothelial carcinoma: development and validation based on TCGA and GEO datasets. In Translational andrology and urology, 13, 2771-2786. doi:10.21037/tau-2024-632. https://pubmed.ncbi.nlm.nih.gov/39816229/
6. Hodgkinson, Colin A, Enoch, Mary-Anne, Srivastava, Vibhuti, Shen, Pei-Hong, Goldman, David. 2010. Genome-wide association identifies candidate genes that influence the human electroencephalogram. In Proceedings of the National Academy of Sciences of the United States of America, 107, 8695-700. doi:10.1073/pnas.0908134107. https://pubmed.ncbi.nlm.nih.gov/20421487/
7. Zhang, Lili, Rong, Weiqi, Ma, Jie, Su, Fei, Cui, Hongyuan. 2022. Comprehensive Analysis of DNA 5-Methylcytosine and N6-Adenine Methylation by Nanopore Sequencing in Hepatocellular Carcinoma. In Frontiers in cell and developmental biology, 10, 827391. doi:10.3389/fcell.2022.827391. https://pubmed.ncbi.nlm.nih.gov/35321246/