Zfp106,也称为Zinc finger protein 106,是一种锌指蛋白,属于RNA结合蛋白家族。它具有三个锌指结构域,能够与RNA分子结合并调节其生物学功能。Zfp106在多种生物学过程中发挥重要作用,包括神经元的存活、肌肉的维持、发育和疾病发生。Zfp106的表达在多种组织和细胞类型中都有发现,特别是在骨骼肌和神经元中。此外,Zfp106的基因多态性与多种疾病相关,包括肌萎缩侧索硬化症(ALS)和阿尔茨海默病等。Zfp106的研究有助于深入理解RNA结合蛋白在细胞生物学和疾病发生中的重要作用,为相关疾病的治疗和预防提供新的思路和策略[1][2][3][4][5][6][7][8][9][10]。
在神经生物学中,Zfp106被发现对神经元的存活至关重要。在老鼠模型中,Zfp106基因的缺失会导致神经元退化、肌肉萎缩和死亡。此外,Zfp106还与C9orf72基因的G4C2重复序列相关。C9orf72基因的G4C2重复序列扩增是导致ALS和额颞叶痴呆(FTD)的主要原因。Zfp106能够与G4C2重复序列结合,并抑制其导致的RNA聚集和RAN翻译,从而减轻神经毒性[1][3]。
在肌肉生物学中,Zfp106被发现对肌肉的维持至关重要。在老鼠模型中,Zfp106基因的缺失会导致肌肉萎缩和神经肌肉信号传导障碍。此外,Zfp106还能够与RNA结合蛋白RBM39相互作用,并参与RNA剪接过程。Zfp106的缺失会导致Nogo基因的异常剪接,进而影响神经肌肉信号传导和肌肉的维持[2]。
Zfp106的表达受到多种因素的调节,包括细胞分化和发育。在细胞分化过程中,Zfp106的表达水平会发生显著变化。例如,在肌肉细胞分化过程中,Zfp106的表达水平会显著升高。此外,Zfp106的表达还受到多种转录因子的调节,包括myogenin和核呼吸因子-1(NRF-1)。Myogenin能够与Zfp106的启动子区域结合,并促进其表达。NRF-1也能够与Zfp106的启动子区域结合,并促进其表达。这些发现表明Zfp106的表达受到多种因素的精细调节,从而在细胞生物学和发育过程中发挥重要作用[4][5]。
除了在神经生物学和肌肉生物学中的作用外,Zfp106还与多种疾病相关。在ALS和FTD中,Zfp106的缺失会导致神经毒性增加和疾病进展。在阿尔茨海默病中,Zfp106的表达水平会降低,并参与疾病的发生和进展。此外,Zfp106的基因多态性还与多种疾病相关,包括非小细胞肺癌和角膜移植排斥反应等。这些发现表明Zfp106在多种疾病的发生和进展中发挥重要作用,为相关疾病的治疗和预防提供新的思路和策略[1][2][3][4][5][6][7][8][9][10]。
综上所述,Zfp106是一种重要的RNA结合蛋白,参与调节神经元的存活、肌肉的维持、发育和疾病发生。Zfp106的表达受到多种因素的调节,包括细胞分化和发育。Zfp106的研究有助于深入理解RNA结合蛋白在细胞生物学和疾病发生中的重要作用,为相关疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Celona, Barbara, Salomonsson, Sally E, Wu, Haifan, DeGrado, William F, Black, Brian L. 2024. Zfp106 binds to G-quadruplex RNAs and inhibits RAN translation and formation of RNA foci caused by G4C2 repeats. In Proceedings of the National Academy of Sciences of the United States of America, 121, e2220020121. doi:10.1073/pnas.2220020121. https://pubmed.ncbi.nlm.nih.gov/39042693/
2. Anderson, Douglas M, Cannavino, Jessica, Li, Hui, Bassel-Duby, Rhonda, Olson, Eric N. 2016. Severe muscle wasting and denervation in mice lacking the RNA-binding protein ZFP106. In Proceedings of the National Academy of Sciences of the United States of America, 113, E4494-503. doi:10.1073/pnas.1608423113. https://pubmed.ncbi.nlm.nih.gov/27418600/
3. Celona, Barbara, Dollen, John von, Vatsavayai, Sarat C, Seeley, William W, Black, Brian L. 2017. Suppression of C9orf72 RNA repeat-induced neurotoxicity by the ALS-associated RNA-binding protein Zfp106. In eLife, 6, . doi:10.7554/eLife.19032. https://pubmed.ncbi.nlm.nih.gov/28072389/
4. Grasberger, Helmut, Ye, Honggang, Mashima, Hirosato, Bell, Graeme I. 2004. Dual promoter structure of ZFP106: regulation by myogenin and nuclear respiratory factor-1. In Gene, 344, 143-59. doi:. https://pubmed.ncbi.nlm.nih.gov/15656981/
5. Grasberger, Helmut, Bell, Graeme I. . Subcellular recruitment by TSG118 and TSPYL implicates a role for zinc finger protein 106 in a novel developmental pathway. In The international journal of biochemistry & cell biology, 37, 1421-37. doi:. https://pubmed.ncbi.nlm.nih.gov/15833274/
6. Ide, Satoru, Dejardin, Jerome. 2015. End-targeting proteomics of isolated chromatin segments of a mammalian ribosomal RNA gene promoter. In Nature communications, 6, 6674. doi:10.1038/ncomms7674. https://pubmed.ncbi.nlm.nih.gov/25812914/
7. Shen, Yupei, Zhu, Weiqiang, Li, Shuaicheng, Zheng, Huajun, Du, Jing. 2024. Integrated analyses of 5 mC, 5hmC methylation and gene expression reveal pathology-associated AKT3 gene and potential biomarkers for Alzheimer's disease. In Journal of psychiatric research, 178, 367-377. doi:10.1016/j.jpsychires.2024.08.021. https://pubmed.ncbi.nlm.nih.gov/39197298/
8. Feng, Nannan, Wang, Yu, Zheng, Min, Garmire, Lana, Qian, Biyun. 2017. Genome-wide analysis of DNA methylation and their associations with long noncoding RNA/mRNA expression in non-small-cell lung cancer. In Epigenomics, , . doi:10.2217/epi-2016-0120. https://pubmed.ncbi.nlm.nih.gov/28111977/
9. Zuberi, A R, Christianson, G J, Mendoza, L M, Shastri, N, Roopenian, D C. . Positional cloning and molecular characterization of an immunodominant cytotoxic determinant of the mouse H3 minor histocompatibility complex. In Immunity, 9, 687-98. doi:. https://pubmed.ncbi.nlm.nih.gov/9846490/
10. Nicholls, Susan, Pong-Wong, Ricardo, Mitchard, Louisa, Dick, Andrew, Bailey, Michael. 2016. Genome-Wide Analysis in Swine Associates Corneal Graft Rejection with Donor-Recipient Mismatches in Three Novel Histocompatibility Regions and One Locus Homologous to the Mouse H-3 Locus. In PloS one, 11, e0152155. doi:10.1371/journal.pone.0152155. https://pubmed.ncbi.nlm.nih.gov/27010211/