SAT1,全称为spermidine/spermine N1-acetyltransferase 1,是一种在多胺代谢中发挥关键作用的酶。它主要负责催化精脒和精胺的N1-乙酰化反应,将它们转化为腐胺。这一过程是多胺分解代谢的限速步骤,对于维持细胞内多胺水平的动态平衡至关重要。多胺是一类在细胞生长、分化、增殖和凋亡中发挥重要作用的低分子量含氮有机化合物。它们在DNA合成、细胞分裂和细胞信号传导等生物学过程中扮演着重要角色。
在肿瘤抑制方面,SAT1的表达与p53蛋白的活性密切相关。p53是一种肿瘤抑制因子,通过调控细胞周期、细胞衰老和细胞凋亡等过程来抑制肿瘤的发生和发展。研究表明,SAT1是p53的转录靶点之一。在细胞中,p53可以激活SAT1的表达,从而促进精脒和精胺的乙酰化,进而降低细胞内多胺水平。低多胺水平可以增加细胞对氧化应激的敏感性,从而诱导细胞发生铁死亡,这是一种由脂质过氧化引起的细胞死亡方式。铁死亡的诱导可以抑制肿瘤的生长和扩散,从而发挥肿瘤抑制的作用。
除了在肿瘤抑制中的作用,SAT1还与多种疾病的发生和发展相关。例如,在神经性疼痛中,SAT1的表达水平升高,并通过与ALOX15信号通路的相互作用,抑制铁死亡的发生,从而缓解神经性疼痛的症状。在急性胰腺炎中,SAT1的表达水平升高,并且与巨噬细胞的浸润和多种信号通路的异常调节相关,提示SAT1可能参与急性胰腺炎的免疫微环境调节。
此外,SAT1的表达还与阿尔茨海默病的发生和发展相关。研究表明,在阿尔茨海默病患者的大脑中,SAT1的表达水平降低,并且与铁死亡的发生相关。SAT1的表达水平降低可能导致细胞内多胺水平升高,进而抑制cGAS的活性,影响DNA传感器的功能,从而影响免疫反应的发生。
综上所述,SAT1是一种在多胺代谢中发挥关键作用的酶,参与调控细胞内多胺水平的动态平衡。SAT1的表达与p53蛋白的活性密切相关,通过促进铁死亡的诱导来抑制肿瘤的发生和发展。此外,SAT1还与多种疾病的发生和发展相关,包括神经性疼痛、急性胰腺炎和阿尔茨海默病等。对SAT1的研究有助于深入理解多胺代谢的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略[1,2,3,4,5,6,7,8,9,10]。
参考文献:
1. Ou, Yang, Wang, Shang-Jui, Li, Dawei, Chu, Bo, Gu, Wei. 2016. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. In Proceedings of the National Academy of Sciences of the United States of America, 113, E6806-E6812. doi:. https://pubmed.ncbi.nlm.nih.gov/27698118/
2. Murthy, Divya, Attri, Kuldeep S, Shukla, Surendra K, Wellen, Kathryn E, Singh, Pankaj K. 2024. Cancer-associated fibroblast-derived acetate promotes pancreatic cancer development by altering polyamine metabolism via the ACSS2-SP1-SAT1 axis. In Nature cell biology, 26, 613-627. doi:10.1038/s41556-024-01372-4. https://pubmed.ncbi.nlm.nih.gov/38429478/
3. Wei, Yunyun, He, Dan, Zhao, Busi, Zhang, Xiaowei, Wang, Li. 2022. The sat1 Gene Is Required for the Growth and Virulence of the Human Pathogenic Fungus Aspergillus fumigatus. In Microbiology spectrum, 10, e0155821. doi:10.1128/spectrum.01558-21. https://pubmed.ncbi.nlm.nih.gov/35107385/
4. Kang, Rui, Kroemer, Guido, Tang, Daolin. 2018. The tumor suppressor protein p53 and the ferroptosis network. In Free radical biology & medicine, 133, 162-168. doi:10.1016/j.freeradbiomed.2018.05.074. https://pubmed.ncbi.nlm.nih.gov/29800655/
5. Wan, Kexing, Jia, Min, Zhang, Hong, Liu, Yongmin, Li, Man. 2023. Electroacupuncture Alleviates Neuropathic Pain by Suppressing Ferroptosis in Dorsal Root Ganglion via SAT1/ALOX15 Signaling. In Molecular neurobiology, 60, 6121-6132. doi:10.1007/s12035-023-03463-z. https://pubmed.ncbi.nlm.nih.gov/37421564/
6. Fang, Zhen, Li, Jie, Cao, Feng, Li, Fei. 2022. Integration of scRNA-Seq and Bulk RNA-Seq Reveals Molecular Characterization of the Immune Microenvironment in Acute Pancreatitis. In Biomolecules, 13, . doi:10.3390/biom13010078. https://pubmed.ncbi.nlm.nih.gov/36671463/
7. Zhao, Chunyuan, Ma, Yunjin, Zhang, Minghui, Gao, Chengjiang, Zhao, Wei. 2023. Polyamine metabolism controls B-to-Z DNA transition to orchestrate DNA sensor cGAS activity. In Immunity, 56, 2508-2522.e6. doi:10.1016/j.immuni.2023.09.012. https://pubmed.ncbi.nlm.nih.gov/37848037/
8. Tian, Wenwen, Zhu, Lewei, Luo, Yongzhou, Xie, Xiaoming, Ye, Feng. 2024. Autophagy Deficiency Induced by SAT1 Potentiates Tumor Progression in Triple-Negative Breast Cancer. In Advanced science (Weinheim, Baden-Wurttemberg, Germany), 11, e2309903. doi:10.1002/advs.202309903. https://pubmed.ncbi.nlm.nih.gov/39073262/
9. Chen, Haoyan, Tong, Tianying, Lu, Shi-Yuan, Hong, Jie, Fang, Jing-Yuan. 2023. Urea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesis. In Cell metabolism, 35, 651-666.e7. doi:10.1016/j.cmet.2023.03.003. https://pubmed.ncbi.nlm.nih.gov/36963394/
10. Dang, Yini, He, Qing, Yang, Siyu, Zheng, Yu, Wu, Ting. 2022. FTH1- and SAT1-Induced Astrocytic Ferroptosis Is Involved in Alzheimer's Disease: Evidence from Single-Cell Transcriptomic Analysis. In Pharmaceuticals (Basel, Switzerland), 15, . doi:10.3390/ph15101177. https://pubmed.ncbi.nlm.nih.gov/36297287/