Rbm3(RNA结合基序蛋白3)是一种重要的RNA结合蛋白,参与调控多种细胞过程,包括细胞增殖、细胞周期调控、细胞凋亡和应激反应。Rbm3基因的表达受低温诱导,其蛋白产物具有一个RNA识别基序(RRM)和一个精氨酸-甘氨酸富集(RGG)结构域,使其能够与多种RNA分子结合,进而影响RNA的剪接、转运和稳定性。
Rbm3在多种生理和病理过程中发挥重要作用。首先,Rbm3具有抗凋亡作用,能够在低温、缺氧等应激条件下保护细胞免受损伤。研究表明,Rbm3能够与Bcl-2家族蛋白结合,抑制细胞凋亡的发生。其次,Rbm3还能够影响细胞周期,参与细胞增殖的调控。例如,在皮肤鳞状细胞癌中,Rbm3的表达水平与肿瘤的恶性程度呈负相关,抑制Rbm3的表达能够显著抑制肿瘤细胞的增殖。此外,Rbm3还能够调节炎症反应,参与免疫应答的调控。例如,在败血症患者中,Rbm3的表达水平显著升高,且与疾病严重程度呈正相关。研究发现,Rbm3能够通过NF-κB/NLRP3信号通路促进炎症反应,加剧急性肺损伤的发生。
Rbm3的表达和功能受多种因素的调控。例如,低温、缺氧等应激条件能够诱导Rbm3的表达,而某些转录因子和microRNA也能够调控Rbm3的表达水平。此外,Rbm3还能够通过与其他蛋白质的相互作用来影响其功能和活性。例如,Rbm3能够与Bcl-2家族蛋白结合,抑制细胞凋亡的发生。
近年来,随着单细胞RNA测序技术的发展,人们对Rbm3在细胞类型特异性表达和功能调控方面的认识逐渐深入。例如,研究表明,在糖尿病视网膜病变中,Rbm3在多种视网膜细胞中表达上调,提示其可能在糖尿病视网膜病变的发生发展中发挥重要作用。此外,Rbm3还能够影响细胞周期,参与细胞增殖的调控。例如,在皮肤鳞状细胞癌中,Rbm3的表达水平与肿瘤的恶性程度呈负相关,抑制Rbm3的表达能够显著抑制肿瘤细胞的增殖。
综上所述,Rbm3是一种重要的RNA结合蛋白,参与调控多种细胞过程,包括细胞增殖、细胞周期调控、细胞凋亡和应激反应。Rbm3在多种生理和病理过程中发挥重要作用,如抗凋亡、细胞增殖调控和炎症反应调控等。近年来,随着单细胞RNA测序技术的发展,人们对Rbm3在细胞类型特异性表达和功能调控方面的认识逐渐深入。Rbm3的研究有助于深入理解RNA结合蛋白的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略[1][2][3][4][5][6][7][8][9][10]。
参考文献:
1. Preußner, Marco, Smith, Heather L, Hughes, Daniel, Mallucci, Giovanna R, Heyd, Florian. 2023. ASO targeting RBM3 temperature-controlled poison exon splicing prevents neurodegeneration in vivo. In EMBO molecular medicine, 15, e17157. doi:10.15252/emmm.202217157. https://pubmed.ncbi.nlm.nih.gov/36946385/
2. Zhu, Xinzhou, Bührer, Christoph, Wellmann, Sven. 2016. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. In Cellular and molecular life sciences : CMLS, 73, 3839-59. doi:10.1007/s00018-016-2253-7. https://pubmed.ncbi.nlm.nih.gov/27147467/
3. Huang, Yan, Sun, Weichao, Zhu, Danli, Feng, Jianguo, Yi, Qian. . RBM3 Inhibits the Cell Cycle of Cutaneous Squamous Cell Carcinoma through the PI3K/AKT Signaling Pathway. In Current molecular pharmacology, 17, e18761429323760. doi:10.2174/0118761429323760240712050006. https://pubmed.ncbi.nlm.nih.gov/39041256/
4. Long, Feiyu, Hu, Liren, Chen, Yingxu, Feng, Jianguo, Wang, Maohua. 2023. RBM3 is associated with acute lung injury in septic mice and patients via the NF-κB/NLRP3 pathway. In Inflammation research : official journal of the European Histamine Research Society ... [et al.], 72, 731-744. doi:10.1007/s00011-023-01705-3. https://pubmed.ncbi.nlm.nih.gov/36781430/
5. Sun, Licheng, Wang, Ruonan, Hu, Guangyi, Zhang, Fang, Xu, Xun. 2021. Single cell RNA sequencing (scRNA-Seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas. In Experimental eye research, 210, 108718. doi:10.1016/j.exer.2021.108718. https://pubmed.ncbi.nlm.nih.gov/34364890/
6. Miao, Xiaobing, Zhang, Nong. 2020. Role of RBM3 in the regulation of cell proliferation in hepatocellular carcinoma. In Experimental and molecular pathology, 117, 104546. doi:10.1016/j.yexmp.2020.104546. https://pubmed.ncbi.nlm.nih.gov/32976820/
7. Al-Astal, Heyam I M, Massad, Maram, AlMatar, Manaf, Ekal, Harith. . Cellular Functions of RNA-Binding Motif Protein 3 (RBM3): Clues in Hypothermia, Cancer Biology and Apoptosis. In Protein and peptide letters, 23, 828-35. doi:. https://pubmed.ncbi.nlm.nih.gov/27364162/
8. Zargar, Ruby, Urwat, Uneeb, Malik, Firdose, Vijh, Ramesh Kumar, Ganai, Nazir A. 2014. Molecular characterization of RNA binding motif protein 3 (RBM3) gene from Pashmina goat. In Research in veterinary science, 98, 51-8. doi:10.1016/j.rvsc.2014.11.016. https://pubmed.ncbi.nlm.nih.gov/25544695/
9. Erkelenz, Steffen, Grzonka, Marta, Papadakis, Antonios, Hoeijmakers, Jan H J, Gyenis, Ákos. 2024. Rbm3 deficiency leads to transcriptome-wide splicing alterations. In RNA biology, 21, 1-13. doi:10.1080/15476286.2024.2413820. https://pubmed.ncbi.nlm.nih.gov/39387568/
10. Hoekstra, Marieke M B, Ness, Natalie, Badia-Soteras, Aina, Brancaccio, Marco. 2024. Bmal1 integrates circadian function and temperature sensing in the suprachiasmatic nucleus. In Proceedings of the National Academy of Sciences of the United States of America, 121, e2316646121. doi:10.1073/pnas.2316646121. https://pubmed.ncbi.nlm.nih.gov/38625943/