Pou5f1,也称为OCT4,是一种重要的转录因子,在维持胚胎干细胞的多能性和自我更新中发挥着关键作用。它属于POU家族转录因子,是POU类5家系的一员。POU5F1基因的表达对于维持未分化胚胎干细胞的状态至关重要,并且对于多能性干细胞的自我更新和分化起着决定性的作用。此外,POU5F1的表达还与多种癌症的发生和发展相关[1,2,3,4,5,6,7,8,9,10]。
POU5F1的表达水平与多种癌症的预后和临床病理参数相关。例如,在肝细胞癌中,POU5F1的表达水平与肿瘤的发生、分期和侵袭深度相关。此外,POU5F1与肿瘤浸润免疫细胞(TIICs)的浸润水平相关。POU5F1参与多种与癌症相关的通路和细胞增殖通路。研究发现,POU5F1是肝细胞癌的一个独立风险因素,并且与肿瘤的发生、分期和侵袭深度相关。在血浆中,POU5F1和AFP的结合具有较高的诊断价值[1]。
POU5F1的表达水平在新生儿和成年的小鼠睾丸中存在差异。在成年的睾丸中,POU5F1的表达水平显著高于新生儿。此外,POU5F1在新生儿的精原干细胞中的表达水平也显著高于16-24周的精原干细胞。这些结果表明,POU5F1是睾丸生殖细胞发育和分化的重要转录因子[3]。
POU5F1在多种癌症中发挥重要作用,包括肝细胞癌、肺癌和结直肠癌。在肝细胞癌中,POU5F1的表达水平与肿瘤的发生、分期和侵袭深度相关。在肺癌中,POU5F1的表达与不良预后相关,并且可以促进M2型肿瘤相关巨噬细胞的极化,从而促进肿瘤的生长和转移。在结直肠癌中,POU5F1通过m6A修饰抑制SOX4 mRNA的表达,从而抑制肿瘤的转移。此外,POU5F1的基因多态性与中国儿童Wilms瘤的易感性降低相关[1,4,8]。
POU5F1在维持胚胎干细胞的多能性和自我更新中发挥着关键作用,并且在多种癌症的发生和发展中发挥重要作用。POU5F1的表达水平与肿瘤的发生、分期和侵袭深度相关,并且与肿瘤浸润免疫细胞的浸润水平相关。POU5F1的研究有助于深入理解其在干细胞多能性和癌症发生发展中的作用机制,为疾病的治疗和预防提供新的思路和策略[1,3,4,8]。
参考文献:
1. He, Dingdong, Zhang, Xiaokang, Tu, Jiancheng. 2020. Diagnostic significance and carcinogenic mechanism of pan-cancer gene POU5F1 in liver hepatocellular carcinoma. In Cancer medicine, 9, 8782-8800. doi:10.1002/cam4.3486. https://pubmed.ncbi.nlm.nih.gov/32978904/
2. Hou, Pingping, Li, Yanqin, Zhang, Xu, Zhao, Yang, Deng, Hongkui. 2013. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. In Science (New York, N.Y.), 341, 651-4. doi:10.1126/science.1239278. https://pubmed.ncbi.nlm.nih.gov/23868920/
3. Niknejad, Parisa, Azizi, Hossein, Sojoudi, Kiana. 2021. POU5F1 Protein and Gene Expression Analysis in Neonate and Adult Mouse Testicular Germ Cells by Immunohistochemistry and Immunocytochemistry. In Cellular reprogramming, 23, 349-358. doi:10.1089/cell.2021.0108. https://pubmed.ncbi.nlm.nih.gov/34788058/
4. Okita, Keisuke, Ichisaka, Tomoko, Yamanaka, Shinya. 2007. Generation of germline-competent induced pluripotent stem cells. In Nature, 448, 313-7. doi:. https://pubmed.ncbi.nlm.nih.gov/17554338/
5. Boyer, Laurie A, Lee, Tong Ihn, Cole, Megan F, Jaenisch, Rudolf, Young, Richard A. . Core transcriptional regulatory circuitry in human embryonic stem cells. In Cell, 122, 947-56. doi:. https://pubmed.ncbi.nlm.nih.gov/16153702/
6. Macfarlan, Todd S, Gifford, Wesley D, Driscoll, Shawn, Trono, Didier, Pfaff, Samuel L. . Embryonic stem cell potency fluctuates with endogenous retrovirus activity. In Nature, 487, 57-63. doi:10.1038/nature11244. https://pubmed.ncbi.nlm.nih.gov/22722858/
7. Theunissen, Thorold W, Powell, Benjamin E, Wang, Haoyi, Gray, Nathanael S, Jaenisch, Rudolf. 2014. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. In Cell stem cell, 15, 471-487. doi:10.1016/j.stem.2014.07.002. https://pubmed.ncbi.nlm.nih.gov/25090446/
8. Lu, Chia-Sing, Shiau, Ai-Li, Su, Bing-Hua, Wu, Chao-Liang, Shieh, Gia-Shing. 2020. Oct4 promotes M2 macrophage polarization through upregulation of macrophage colony-stimulating factor in lung cancer. In Journal of hematology & oncology, 13, 62. doi:10.1186/s13045-020-00887-1. https://pubmed.ncbi.nlm.nih.gov/32487125/
9. Kumar-Sinha, Chandan, Kalyana-Sundaram, Shanker, Chinnaiyan, Arul M. 2015. Landscape of gene fusions in epithelial cancers: seq and ye shall find. In Genome medicine, 7, 129. doi:10.1186/s13073-015-0252-1. https://pubmed.ncbi.nlm.nih.gov/26684754/
10. Zyner, Katherine G, Simeone, Angela, Flynn, Sean M, Tannahill, David, Balasubramanian, Shankar. 2022. G-quadruplex DNA structures in human stem cells and differentiation. In Nature communications, 13, 142. doi:10.1038/s41467-021-27719-1. https://pubmed.ncbi.nlm.nih.gov/35013231/