Aryl hydrocarbon receptor(AhR)是一种配体依赖性转录因子,参与多种生物学过程,包括细胞分化和发育。AhR基因的启动子区域富含GC盒,并包含多个转录因子结合位点,如Sp1、cAMP反应元件、AP-1和E盒等[9]。AhR的活性受到多种因素的调控,包括配体结合、转录后修饰和细胞内信号通路等。AhR与多种疾病的发生和发展密切相关,如癌症、糖尿病、心血管疾病等[1,2,3]。
AhR的配体包括多种环境污染物和内源性分子,如多环芳烃、多氯联苯、色氨酸代谢产物等。AhR与配体结合后,通过形成二聚体并与DNA结合,激活下游基因的转录。AhR的下游基因包括CYP1A1、CYP1B1、NQO1等,这些基因参与细胞解毒、代谢和抗氧化应激等过程[4,5,6,7]。
AhR的活性受到多种转录后修饰的调控,如磷酸化、乙酰化和泛素化等。AhR的磷酸化可以增强其核转位和转录活性,而乙酰化和泛素化则可以降低其活性。AhR的活性还受到细胞内信号通路的调控,如MAPK、PI3K/AKT和Wnt/β-catenin等信号通路。这些信号通路可以影响AhR的表达、核转位和转录活性,进而影响AhR下游基因的表达和生物学功能[1,2,3]。
AhR的活性还受到细胞内信号通路的调控,如MAPK、PI3K/AKT和Wnt/β-catenin等信号通路。这些信号通路可以影响AhR的表达、核转位和转录活性,进而影响AhR下游基因的表达和生物学功能[1,2,3]。例如,AhR的激活可以抑制乳腺癌干细胞的形成,并抑制肿瘤的生长和转移[2]。AhR的激活还可以抑制脂肪细胞的分化,并影响脂肪细胞的代谢和功能[7]。AhR的激活还可以影响细胞对缺氧的反应,并调节细胞凋亡和血管生成等过程[8]。
AhR的研究有助于深入理解AhR的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Ferraù, F, Romeo, P D, Puglisi, S, Picerno, I A M, Cannavò, S. 2018. GSTP1 gene methylation and AHR rs2066853 variant predict resistance to first generation somatostatin analogs in patients with acromegaly. In Journal of endocrinological investigation, 42, 825-831. doi:10.1007/s40618-018-0988-8. https://pubmed.ncbi.nlm.nih.gov/30488289/
2. Saito, Nao, Kanno, Yuichiro, Yamashita, Naoya, Yoshinari, Kouichi, Nemoto, Kiyomitsu. . The Differential Selectivity of Aryl Hydrocarbon Receptor (AHR) Agonists towards AHR-Dependent Suppression of Mammosphere Formation and Gene Transcription in Human Breast Cancer Cells. In Biological & pharmaceutical bulletin, 44, 571-578. doi:10.1248/bpb.b20-00961. https://pubmed.ncbi.nlm.nih.gov/33790107/
3. Yokoyama, Shigetoshi, Koo, Imhoi, Aibara, Daisuke, Perdew, Gary H, Patterson, Andrew D. 2024. Sphingosine Kinase 2 Regulates Aryl Hydrocarbon Receptor Nuclear Translocation and Target Gene Activation. In Advanced science (Weinheim, Baden-Wurttemberg, Germany), 11, e2400794. doi:10.1002/advs.202400794. https://pubmed.ncbi.nlm.nih.gov/39207053/
4. Kodama, Susumu, Okada, Kumiko, Inui, Hideyuki, Ohkawa, Hideo. 2007. Aryl hydrocarbon receptor (AhR)-mediated reporter gene expression systems in transgenic tobacco plants. In Planta, 227, 37-45. doi:. https://pubmed.ncbi.nlm.nih.gov/17879099/
5. Garrison, P M, Denison, M S. . Analysis of the murine AhR gene promoter. In Journal of biochemical and molecular toxicology, 14, 1-10. doi:. https://pubmed.ncbi.nlm.nih.gov/10561076/
6. Johari, Yusuf B, Scarrott, Joseph M, Pohle, Thilo H, Brown, Adam J, James, David C. 2022. Engineering of the CMV promoter for controlled expression of recombinant genes in HEK293 cells. In Biotechnology journal, 17, e2200062. doi:10.1002/biot.202200062. https://pubmed.ncbi.nlm.nih.gov/35482470/
7. Shimba, Shigeki, Hayashi, Mitsuaki, Ohno, Toshiharu, Tezuka, Masakatsu. . Transcriptional regulation of the AhR gene during adipose differentiation. In Biological & pharmaceutical bulletin, 26, 1266-71. doi:. https://pubmed.ncbi.nlm.nih.gov/12951469/
8. Cilek, Mehmet Zeynel, Hirohata, Satoshi, Faruk Hatipoglu, Omer, Kusachi, Shozo, Ninomiya, Yoshifumi. . AHR, a novel acute hypoxia-response sequence, drives reporter gene expression under hypoxia in vitro and in vivo. In Cell biology international, 35, 1-8. doi:10.1042/CBI20100290. https://pubmed.ncbi.nlm.nih.gov/20795945/
9. Schmidt, J V, Carver, L A, Bradfield, C A. . Molecular characterization of the murine Ahr gene. Organization, promoter analysis, and chromosomal assignment. In The Journal of biological chemistry, 268, 22203-9. doi:. https://pubmed.ncbi.nlm.nih.gov/8408082/