ACTA2,即α-平滑肌肌动蛋白基因,编码α-平滑肌肌动蛋白,这是血管平滑肌肌动蛋白的一种异构体,通常在血管平滑肌细胞中表达,对血管运动性和收缩性有贡献。ACTA2基因的突变导致多种弥漫性血管病变,如胸主动脉瘤和夹层,以及闭塞性血管疾病,包括早发性冠状动脉疾病和缺血性中风。动脉平滑肌细胞中分化特异性α-平滑肌肌动蛋白的动态和蛋白质的增殖已有详细描述。尽管在α-平滑肌肌动蛋白的修饰和ACTA2基因及肌球蛋白的突变方面已经进行了大量的研究工作,但基因突变导致病理过程的潜在机制仍有待阐明。最近的研究表明,ACTA2基因突变导致的动脉病变具有独特的遗传位点、组织病理学、神经学后遗症和影像学特征,与 moyamoya 病不同。因此,对ACTA2基因突变导致的动脉病变进行准确的神经影像学诊断非常重要,因为这种综合征容易发生并发症,如早发性缺血性中风和升主动脉瘤[1,2,3,4,5,6]。此外,ACTA2基因突变也与平滑肌功能障碍综合征(MSMDS)相关,这是一种儿童期发病的血管疾病,具有多种临床特征,如血管扩张、闭塞和动脉瘤形成。ACTA2基因突变导致α-平滑肌肌动蛋白在核内定位减少,进而影响平滑肌细胞的分化和基因表达,导致血管病变的发生[7]。此外,长非编码RNA ACTA2-AS1通过相互作用促进胆管反应,与p300/ELK1复合物相互作用,调节转录,影响胆管疾病的进展[8]。此外,ACTA2基因突变也与静脉畸形的发生有关,ACTA2基因缺陷导致血管完整性受损和血管发育异常,进而导致静脉畸形的发生[9]。综上所述,ACTA2基因在血管系统的发育和功能中发挥重要作用,其突变导致多种血管病变的发生,包括胸主动脉瘤、夹层、早发性冠状动脉疾病、缺血性中风和静脉畸形等。深入研究ACTA2基因的生物学功能和突变机制,有助于更好地理解血管病变的发生机制,为血管病变的诊断和治疗提供新的思路和策略。
参考文献:
1. Yuan, Shi-Min. . α-Smooth Muscle Actin and ACTA2 Gene Expressions in Vasculopathies. In Brazilian journal of cardiovascular surgery, 30, 644-9. doi:10.5935/1678-9741.20150081. https://pubmed.ncbi.nlm.nih.gov/26934405/
2. Navarro-Corcuera, Amaia, Sehrawat, Tejasav S, Jalan-Sakrikar, Nidhi, Shah, Vijay H, Huebert, Robert C. 2021. Long non-coding RNA ACTA2-AS1 promotes ductular reaction by interacting with the p300/ELK1 complex. In Journal of hepatology, 76, 921-933. doi:10.1016/j.jhep.2021.12.014. https://pubmed.ncbi.nlm.nih.gov/34953958/
3. Cuoco, Joshua A, Busch, Christopher M, Klein, Brendan J, Nicholson, Andrew D, Marvin, Eric A. 2018. ACTA2 Cerebral Arteriopathy: Not Just a Puff of Smoke. In Cerebrovascular diseases (Basel, Switzerland), 46, 161-171. doi:10.1159/000493863. https://pubmed.ncbi.nlm.nih.gov/30300893/
4. Kostyk, P, Kumaraswami, S, Rajendran, G P, Goldberg, J. 2021. Management of a parturient with the ACTA2 gene mutation. In International journal of obstetric anesthesia, 47, 103173. doi:10.1016/j.ijoa.2021.103173. https://pubmed.ncbi.nlm.nih.gov/34024726/
5. Newman, Alexandra A C, Serbulea, Vlad, Baylis, Richard A, Cherepanova, Olga A, Owens, Gary K. 2021. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms. In Nature metabolism, 3, 166-181. doi:10.1038/s42255-020-00338-8. https://pubmed.ncbi.nlm.nih.gov/33619382/
6. Zhang, Andrew, Jo, Alexandria, Grajewski, Karen, Kim, John. 2019. Characteristic Cerebrovascular Findings Associated with ACTA2 Gene Mutations. In The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques, 46, 342-343. doi:10.1017/cjn.2019.20. https://pubmed.ncbi.nlm.nih.gov/30975232/
7. Kwartler, Callie S, Pedroza, Albert J, Kaw, Anita, Fischbein, Michael P, Milewicz, Dianna M. 2023. Nuclear Smooth Muscle α-actin Participates in Vascular Smooth Muscle Cell Differentiation. In Nature cardiovascular research, 2, 937-955. doi:10.1038/s44161-023-00337-4. https://pubmed.ncbi.nlm.nih.gov/38919852/
8. Yang, Jiayi, Zhuang, Hongjie, Li, Jinhua, Nikolic-Paterson, David J, Yu, Xueqing. 2024. The secreted micropeptide C4orf48 enhances renal fibrosis via an RNA-binding mechanism. In The Journal of clinical investigation, 134, . doi:10.1172/JCI178392. https://pubmed.ncbi.nlm.nih.gov/38625739/
9. Deng, Cuncan, Deng, Guofei, Chu, Hongwu, Sun, Chunhui, Zhang, Changhua. 2023. Construction of a hypoxia-immune-related prognostic panel based on integrated single-cell and bulk RNA sequencing analyses in gastric cancer. In Frontiers in immunology, 14, 1140328. doi:10.3389/fimmu.2023.1140328. https://pubmed.ncbi.nlm.nih.gov/37180146/