ACAD11,全称为Acyl-CoA Dehydrogenase Family, Member 11,是一种长链酰基辅酶A脱氢酶。该基因编码的蛋白主要参与脂肪酸的β-氧化过程,这是脂肪酸代谢中的一个关键步骤,用于产生能量。ACAD11对具有20至26个碳原子的长链脂肪酸具有显著活性,并且对C22CoA的活性最高[2]。ACAD11在人类大脑中表达显著,特别是在小脑的白质中[2]。小脑中的ACAD11和其他酰基辅酶A脱氢酶的细胞分布差异表明,小脑中的β-氧化可能参与除了产生能量以外的其他功能,例如合成和/或降解独特的细胞脂质以及芳香族氨基酸的代谢,这些化合物对神经元功能至关重要[2]。
ACAD11与多种生物学过程和疾病相关。研究发现,在葡萄糖饥饿的情况下,ACAD11是p53转录激活功能的一个代谢靶点,对于氧化磷酸化(OXPHOS)和细胞存活至关重要[3]。此外,ACAD11的表达与骨密度(BMD)水平有关,是骨质疏松症诊断的潜在生物标志物之一[1]。在肾脏透明细胞癌(KIRC)中,ACAD11也被认为是具有显著预后意义的基因[4]。此外,ACAD11在肥胖和糖尿病的发生发展中发挥重要作用,可以通过调节脂肪组织的炎症和脂解过程来改善葡萄糖和脂质代谢[5]。在视网膜母细胞瘤(RB)的研究中,ACAD11也显示出其与RB1基因突变相关的病理作用[6]。在急性寒冷刺激下,ACAD11在小鼠皮下白色脂肪组织中表达上调,可能与棕色脂肪细胞的形成有关[7]。在非洲裔美国人中,ACAD11基因的变异与2型糖尿病相关终末期肾病(T2D-ESKD)的发生发展有关[8]。在βB3-晶状体蛋白缺乏的小鼠模型中,ACAD11的表达下调,表明其在晶状体形态和蛋白质组中的重要作用[9]。
综上所述,ACAD11在多种生物学过程中发挥重要作用,包括脂肪酸代谢、能量代谢、骨密度调节、肾脏癌预后、肥胖和糖尿病、视网膜母细胞瘤、棕色脂肪细胞形成、终末期肾病以及晶状体形态和蛋白质组。ACAD11的研究有助于深入理解脂肪酸代谢的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Lu, Yao, Wen, Wen, Huang, Qiang, Sun, Liang, Wang, Qian. 2024. Development and experimental validation of an energy metabolism-related gene signature for diagnosing of osteoporosis. In Scientific reports, 14, 8153. doi:10.1038/s41598-024-59062-y. https://pubmed.ncbi.nlm.nih.gov/38589566/
2. He, Miao, Pei, Zhengtong, Mohsen, Al-Walid, Ensenauer, Regina, Vockley, Jerry. 2010. Identification and characterization of new long chain acyl-CoA dehydrogenases. In Molecular genetics and metabolism, 102, 418-29. doi:10.1016/j.ymgme.2010.12.005. https://pubmed.ncbi.nlm.nih.gov/21237683/
3. Jiang, Dadi, LaGory, Edward L, Kenzelmann Brož, Daniela, Giaccia, Amato J, Attardi, Laura D. 2015. Analysis of p53 transactivation domain mutants reveals Acad11 as a metabolic target important for p53 pro-survival function. In Cell reports, 10, 1096-109. doi:10.1016/j.celrep.2015.01.043. https://pubmed.ncbi.nlm.nih.gov/25704813/
4. Zhang, Jing, Zhao, Qian, Huang, Hongwei, Lin, Xuhong. 2024. Establishment and validation of a novel peroxisome-related gene prognostic risk model in kidney clear cell carcinoma. In BMC urology, 24, 26. doi:10.1186/s12894-024-01404-z. https://pubmed.ncbi.nlm.nih.gov/38297313/
5. Wang, Cuiting, An, Tian, Lu, Cong, Zhu, Zhiyao, Gao, Yanbin. 2024. Tangzhiping Decoction Improves Glucose and Lipid Metabolism and Exerts Protective Effects Against White Adipose Tissue Dysfunction in Prediabetic Mice. In Drug design, development and therapy, 18, 2951-2969. doi:10.2147/DDDT.S462603. https://pubmed.ncbi.nlm.nih.gov/39050798/
6. Bisht, Shilpa, Chawla, Bhavna, Kumar, Amit, Sharma, Pradeep, Dada, Rima. 2022. Identification of novel genes by targeted exome sequencing in Retinoblastoma. In Ophthalmic genetics, 43, 771-788. doi:10.1080/13816810.2022.2106497. https://pubmed.ncbi.nlm.nih.gov/35930312/
7. Liang, Xiaojuan, Pan, Jianfei, Cao, Chunwei, Tao, Cong, Wang, Yanfang. 2019. Transcriptional Response of Subcutaneous White Adipose Tissue to Acute Cold Exposure in Mice. In International journal of molecular sciences, 20, . doi:10.3390/ijms20163968. https://pubmed.ncbi.nlm.nih.gov/31443159/
8. Guan, Meijian, Ma, Jun, Keaton, Jacob M, Bowden, Donald W, Ng, Maggie C Y. 2016. Association of kidney structure-related gene variants with type 2 diabetes-attributed end-stage kidney disease in African Americans. In Human genetics, 135, 1251-1262. doi:. https://pubmed.ncbi.nlm.nih.gov/27461219/
9. Rayêe, Danielle, Wilmarth, Phillip A, VanSlyke, Judy K, David, Larry L, Cvekl, Ales. 2024. Analysis of mouse lens morphological and proteomic abnormalities following depletion of βB3-crystallin. In bioRxiv : the preprint server for biology, , . doi:10.1101/2024.12.30.630781. https://pubmed.ncbi.nlm.nih.gov/39803551/