推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-S1pr5em1/Cya 基因敲除小鼠
复苏/繁育服务
产品名称:
S1pr5-KO
产品编号:
S-KO-15556
品系背景:
C57BL/6JCya
每周秒杀
* 使用本品系发表的文献需注明:S1pr5-KO mice (Strain S-KO-15556) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-S1pr5em1/Cya
品系编号
KOCMP-94226-S1pr5-B6J-VA
产品编号
S-KO-15556
基因名
S1pr5
品系背景
C57BL/6JCya
基因别称
Edg8,S1P5,lpB4
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:2150641 Bone marrow from mice homozygous for a knock-out allele induces impaired NK cell egression from the lymph nodes and bone marrow.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
S1pr5位于小鼠的9号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得S1pr5基因敲除小鼠,性成熟后取精子冻存。
S1pr5-KO小鼠模型由赛业生物(Cyagen)采用基因编辑技术构建,旨在研究S1pr5基因在小鼠体内的功能。S1pr5基因位于小鼠9号染色体上,由3个外显子组成,其中ATG起始密码子在3号外显子,TGA终止密码子也在3号外显子(转录本S1pr5-201:ENSMUST00000122088)。赛业生物(Cyagen)选择3号外显子作为目标区域,该区域包含1203个碱基对的编码序列。构建过程中,赛业生物(Cyagen)将核糖核蛋白(RNP)和靶向载体共同注入受精卵。出生的小鼠经过PCR和测序分析进行基因型鉴定。此外,对于携带敲除等位基因的小鼠,其骨髓中NK细胞的淋巴和骨髓迁移能力受损。
基因研究概述
S1pr5,也称为Sphingosine-1-phosphate receptor 5,是一种重要的G蛋白偶联受体,属于鞘氨醇-1-磷酸受体(S1PR)家族。S1PR家族成员在多种生理和病理过程中发挥作用,包括免疫调节、细胞迁移、血管生成和肿瘤发生等。S1pr5在哺乳动物组织中广泛表达,尤其在免疫细胞中表达较高。S1pr5的配体为鞘氨醇-1-磷酸(S1P),S1P是一种重要的生物活性脂质,参与调节细胞生长、分化、存活和迁移等过程。
在免疫系统中,S1pr5在调节组织驻留淋巴细胞(TRM细胞)的归巢和迁移中发挥关键作用。研究发现,S1pr5在TRM细胞中表达下调,这有助于TRM细胞在组织中的驻留和免疫保护作用的发挥[1]。此外,S1pr5还参与调节CD4+ T细胞的活化、分化和功能。研究发现,在结核病感染过程中,新活化的CD4+ T细胞表达S1pr5,而耗竭的CD4+ T细胞则不表达S1pr5[4]。这表明S1pr5可能与CD4+ T细胞的活化状态和功能密切相关。
在肿瘤发生发展中,S1pr5也发挥着重要作用。研究发现,S1pr5在结肠癌细胞中表达上调,且与肿瘤生长、增殖、迁移和侵袭等恶性生物学行为相关[2]。S1pr5的过表达可以激活NF-κB/IDO1信号通路,从而促进肿瘤的发生发展。此外,S1pr5的表达还与结肠癌患者的预后相关。研究发现,S1pr5高表达的患者预后较差,而S1pr5低表达的患者预后较好[5,6]。这表明S1pr5可能是结肠癌诊断和治疗的潜在靶点。
此外,S1pr5还与多种疾病相关。研究发现,S1pr5基因的突变与系统性红斑狼疮的发生发展相关[3]。此外,S1pr5的选择性激动剂A-971432在亨廷顿病小鼠模型中表现出良好的治疗效果,可以延缓疾病进展并延长寿命[7]。
综上所述,S1pr5是一种重要的G蛋白偶联受体,在免疫系统和肿瘤发生发展中发挥着重要作用。S1pr5的深入研究有助于揭示其在多种疾病中的调控机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Evrard, Maximilien, Wynne-Jones, Erica, Peng, Changwei, Jameson, Stephen C, Mackay, Laura K. 2021. Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. In The Journal of experimental medicine, 219, . doi:10.1084/jem.20210116. https://pubmed.ncbi.nlm.nih.gov/34677611/
2. Zhou, Huijun, Yin, Xianli, Bai, Fei, Jiang, Shaofeng, Zhao, Jinfeng. 2020. The Role and Mechanism of S1PR5 in Colon Cancer. In Cancer management and research, 12, 4759-4775. doi:10.2147/CMAR.S239118. https://pubmed.ncbi.nlm.nih.gov/32606966/
3. Halloran, Philip F, Reeve, Jeff, Madill-Thomsen, Katelynn S, Prewett, Adam, Billings, Paul. 2022. The Trifecta Study: Comparing Plasma Levels of Donor-derived Cell-Free DNA with the Molecular Phenotype of Kidney Transplant Biopsies. In Journal of the American Society of Nephrology : JASN, 33, 387-400. doi:10.1681/ASN.2021091191. https://pubmed.ncbi.nlm.nih.gov/35058354/
4. Gress, Abigail R, Ronayne, Christine E, Thiede, Joshua M, Boulware, David R, Bold, Tyler D. 2023. Recently activated CD4 T cells in tuberculosis express OX40 as a target for host-directed immunotherapy. In Nature communications, 14, 8423. doi:10.1038/s41467-023-44152-8. https://pubmed.ncbi.nlm.nih.gov/38110410/
5. Wei, Jingsun, Ge, Xiaoxu, Qian, Yucheng, Tang, Yang, Ding, Kefeng. 2024. Development and verification of a combined immune- and cancer-associated fibroblast related prognostic signature for colon adenocarcinoma. In Frontiers in immunology, 15, 1291938. doi:10.3389/fimmu.2024.1291938. https://pubmed.ncbi.nlm.nih.gov/38312843/
6. Xu, Zipeng, Gong, Jiantao, Hu, Weidong, Yuan, Yihang, Chen, Chaobo. 2024. The Risk Genes S1PR5, CMC1, and ASAH1 as Potential Targets for the Diagnosis, Immunotherapy, and Treatment of Colon Adenocarcinoma by Single-Cell and Bulk RNA Sequencing Analysis. In Current medicinal chemistry, , . doi:10.2174/0109298673331144241009082052. https://pubmed.ncbi.nlm.nih.gov/39513308/
7. Di Pardo, Alba, Castaldo, Salvatore, Amico, Enrico, van der Kam, Elizabeth, Maglione, Vittorio. . Stimulation of S1PR5 with A-971432, a selective agonist, preserves blood-brain barrier integrity and exerts therapeutic effect in an animal model of Huntington's disease. In Human molecular genetics, 27, 2490-2501. doi:10.1093/hmg/ddy153. https://pubmed.ncbi.nlm.nih.gov/29688337/