推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Ulk3em1/Cya 基因敲除小鼠
复苏/繁育服务
产品名称:
Ulk3-KO
产品编号:
S-KO-13651
品系背景:
C57BL/6JCya
每周秒杀
* 使用本品系发表的文献需注明:Ulk3-KO mice (Strain S-KO-13651) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Ulk3em1/Cya
品系编号
KOCMP-71742-Ulk3-B6J-VA
产品编号
S-KO-13651
基因名
Ulk3
品系背景
C57BL/6JCya
基因别称
1200015E14Rik
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
Ulk3位于小鼠的9号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得Ulk3基因敲除小鼠,性成熟后取精子冻存。
UlK3-KO小鼠模型是由赛业生物(Cyagen)构建的全身性基因敲除小鼠模型。该模型通过基因编辑技术实现了对UlK3基因的敲除。UlK3基因位于小鼠9号染色体上,由16个外显子组成,其中ATG起始密码子位于1号外显子,TGA终止密码子位于16号外显子。赛业生物(Cyagen)选择第2~4个外显子作为目标区域,该区域包含367个碱基对的编码序列。敲除区域大约为1.7kb,且该区域没有其他已知基因。通过PCR和测序分析对出生小鼠进行基因型鉴定,以确保敲除等位基因的成功导入。UlK3-KO小鼠模型可用于研究UlK3基因在小鼠体内的功能,为相关疾病的发病机制研究提供重要工具。
基因研究概述
ULK3,也称为unc-51 like kinase 3,是一种丝氨酸/苏氨酸蛋白激酶。ULK3在多种细胞过程中发挥重要作用,包括自噬、细胞分裂和Sonic hedgehog信号通路。ULK3与另一个蛋白质ULK1共同作为自噬的起始激酶,参与自噬的调控。ULK3还与GLI蛋白相互作用,参与Sonic hedgehog信号通路的传导。
ULK3在多种疾病中发挥重要作用,包括皮肤癌、乳腺癌、阿尔茨海默病和高血压。在皮肤癌中,ULK3的表达水平升高,且ULK3的缺失会降低角质形成细胞的增殖和克隆形成能力,影响转录过程,进而影响干细胞相关和代谢程序[1]。在乳腺癌中,ULK3的表达水平与乳腺癌风险相关,且raloxifene的使用可以降低乳腺癌风险[2]。在阿尔茨海默病中,ULK3的表达水平升高,且ULK3的缺失会增强自噬,减少树突的大小,影响空间记忆[3]。在高血压中,ULK3的缺失会增加血压,且ULK3的缺失会导致Src活性增加,进而影响血压调节[4]。
此外,ULK3还参与其他疾病的发病机制。在冠状动脉疾病中,ULK3的表达水平与冠状动脉疾病风险相关[5]。在急性髓细胞白血病中,ULK3的表达水平升高,且ULK3的缺失会抑制白血病细胞的自噬和增殖[6]。在自噬诱导过程中,ULK3依赖的GLI1激活可以促进DNMT3A的表达,进而影响自噬的长期效果[7]。ULK3的激酶活性可以通过磷酸化和小分子抑制剂SU6668进行调控[8]。ULK3还与CSL和GLI信号通路相互作用,参与癌症相关成纤维细胞的激活[9]。ULK3在Sonic hedgehog信号通路中具有双重功能,既可以作为激酶调节GLI蛋白,也可以通过与Sufu蛋白相互作用影响GLI蛋白的活性[10]。
综上所述,ULK3是一种重要的丝氨酸/苏氨酸蛋白激酶,在多种细胞过程中发挥重要作用,包括自噬、细胞分裂和Sonic hedgehog信号通路。ULK3在多种疾病中发挥重要作用,包括皮肤癌、乳腺癌、阿尔茨海默病和高血压。此外,ULK3还参与其他疾病的发病机制,如冠状动脉疾病、急性髓细胞白血病等。ULK3的研究有助于深入理解ULK3的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Goruppi, Sandro, Clocchiatti, Andrea, Bottoni, Giulia, Simon, Christian, Paolo Dotto, G. 2023. The ULK3 kinase is a determinant of keratinocyte self-renewal and tumorigenesis targeting the arginine methylome. In Nature communications, 14, 887. doi:10.1038/s41467-023-36410-6. https://pubmed.ncbi.nlm.nih.gov/36797248/
2. Zhang, Naiqi, Li, Yanni, Sundquist, Jan, Sundquist, Kristina, Ji, Jianguang. 2023. Identifying actionable druggable targets for breast cancer: Mendelian randomization and population-based analyses. In EBioMedicine, 98, 104859. doi:10.1016/j.ebiom.2023.104859. https://pubmed.ncbi.nlm.nih.gov/38251461/
3. Jin, Yuxi, Zhao, Lin, Zhang, Yanli, Xiao, Ming, Sheng, Chengyu. 2024. BIN1 deficiency enhances ULK3-dependent autophagic flux and reduces dendritic size in mouse hippocampal neurons. In Autophagy, 21, 223-242. doi:10.1080/15548627.2024.2393932. https://pubmed.ncbi.nlm.nih.gov/39171951/
4. Lee, Hyeon-Ju, Kang, Ji-One, Kim, Sung-Moon, Lee, Young-Ho, Oh, Bermseok. 2016. Gene Silencing and Haploinsufficiency of Csk Increase Blood Pressure. In PloS one, 11, e0146841. doi:10.1371/journal.pone.0146841. https://pubmed.ncbi.nlm.nih.gov/26751575/
5. Hodonsky, Chani J, Turner, Adam W, Khan, Mohammad Daud, Björkegren, Johan L M, Miller, Clint L. 2023. Multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. In Cell genomics, 4, 100465. doi:10.1016/j.xgen.2023.100465. https://pubmed.ncbi.nlm.nih.gov/38190101/
6. Jing, Yipei, Jiang, Xueke, Lei, Li, Yang, Zesong, Zhang, Ling. 2021. Mutant NPM1-regulated lncRNA HOTAIRM1 promotes leukemia cell autophagy and proliferation by targeting EGR1 and ULK3. In Journal of experimental & clinical cancer research : CR, 40, 312. doi:10.1186/s13046-021-02122-2. https://pubmed.ncbi.nlm.nih.gov/34615546/
7. González-Rodríguez, Patricia, Cheray, Mathilde, Keane, Lily, Engskog-Vlachos, Pinelopi, Joseph, Bertrand. 2022. ULK3-dependent activation of GLI1 promotes DNMT3A expression upon autophagy induction. In Autophagy, 18, 2769-2780. doi:10.1080/15548627.2022.2039993. https://pubmed.ncbi.nlm.nih.gov/35226587/
8. Kasak, Lagle, Näks, Mihkel, Eek, Priit, Kasvandik, Sergo, Piirsoo, Marko. 2018. Characterization of Protein Kinase ULK3 Regulation by Phosphorylation and Inhibition by Small Molecule SU6668. In Biochemistry, 57, 5456-5465. doi:10.1021/acs.biochem.8b00356. https://pubmed.ncbi.nlm.nih.gov/30096229/
9. Goruppi, Sandro, Procopio, Maria-Giuseppina, Jo, Seunghee, Neel, Victor, Dotto, G Paolo. . The ULK3 Kinase Is Critical for Convergent Control of Cancer-Associated Fibroblast Activation by CSL and GLI. In Cell reports, 20, 2468-2479. doi:10.1016/j.celrep.2017.08.048. https://pubmed.ncbi.nlm.nih.gov/28877478/
10. Maloverjan, Alla, Piirsoo, Marko, Kasak, Lagle, Østerlund, Torben, Kogerman, Priit. 2010. Dual function of UNC-51-like kinase 3 (Ulk3) in the Sonic hedgehog signaling pathway. In The Journal of biological chemistry, 285, 30079-90. doi:10.1074/jbc.M110.133991. https://pubmed.ncbi.nlm.nih.gov/20643644/