Mmp23,也称为基质金属蛋白酶23,是一种属于基质金属蛋白酶(MMP)家族的蛋白。MMP家族是一类锌依赖性内肽酶,参与细胞外基质(ECM)的降解和重塑,在多种生理和病理过程中发挥重要作用,包括组织发育、伤口愈合、炎症反应和肿瘤侵袭等。Mmp23在骨细胞分化过程中表达下调,与骨细胞表型的获得密切相关[1]。此外,Mmp23还与软骨和骨形成有关,在hBMP-2诱导的骨形成过程中表达上调[2]。Mmp23还与心脏功能相关,在心力衰竭患者的心肌中表达上调[5]。此外,Mmp23还与炎症性肠病有关,在溃疡性结肠炎和克罗恩病患者中表达上调[4]。此外,Mmp23还与颅缝闭合有关,在颅缝闭合异常患者中,Mmp23表达失衡[7]。此外,Mmp23还与疼痛和伤口愈合有关,在手术切口模型中,Mmp23表达上调[9]。
Mmp23的功能不仅限于MMP活性,其前结构域(MMP23-PD)还具有调节电压门控钾通道KV1.3的细胞内转运的功能[3]。此外,Mmp23还与GATA4共同调控血睾屏障功能和乳酸代谢[8]。此外,Mmp23还与DNA甲基化状态改变有关,在CUR暴露后,Mmp23表达下调[6]。
综上所述,Mmp23是一种多功能蛋白,参与多种生理和病理过程,包括骨细胞分化、软骨和骨形成、心脏功能、炎症性肠病、颅缝闭合、疼痛和伤口愈合等。Mmp23的研究有助于深入理解MMP家族的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Prideaux, M, Staines, K A, Jones, E R, Pitsillides, A A, Farquharson, C. 2015. MMP and TIMP temporal gene expression during osteocytogenesis. In Gene expression patterns : GEP, 18, 29-36. doi:10.1016/j.gep.2015.04.004. https://pubmed.ncbi.nlm.nih.gov/25982959/
2. Clancy, Brian M, Johnson, Joyce D, Lambert, Andre Jean, Leppanen, Scott, Pittman, Debra D. . A gene expression profile for endochondral bone formation: oligonucleotide microarrays establish novel connections between known genes and BMP-2-induced bone formation in mouse quadriceps. In Bone, 33, 46-63. doi:. https://pubmed.ncbi.nlm.nih.gov/12919699/
3. Nguyen, Hai M, Galea, Charles A, Schmunk, Galina, Norton, Raymond S, Chandy, K George. 2013. Intracellular trafficking of the KV1.3 potassium channel is regulated by the prodomain of a matrix metalloprotease. In The Journal of biological chemistry, 288, 6451-64. doi:10.1074/jbc.M112.421495. https://pubmed.ncbi.nlm.nih.gov/23300077/
4. Fonseca-Camarillo, Gabriela, Furuzawa-Carballeda, Janette, Martínez-Benitez, Braulio, Barreto-Zuñiga, Rafael, Yamamoto-Furusho, Jesús K. 2020. Increased expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and MMP10, MMP23 in inflammatory bowel disease: Cross-sectional study. In Scandinavian journal of immunology, 93, e12962. doi:10.1111/sji.12962. https://pubmed.ncbi.nlm.nih.gov/32853407/
5. Min, Kyung-Duk, Asakura, Masanori, Liao, Yulin, Mochizuki, Naoki, Kitakaze, Masafumi. 2010. Identification of genes related to heart failure using global gene expression profiling of human failing myocardium. In Biochemical and biophysical research communications, 393, 55-60. doi:10.1016/j.bbrc.2010.01.076. https://pubmed.ncbi.nlm.nih.gov/20100464/
6. Tang, Qian, Ojiro, Ryota, Ozawa, Shunsuke, Yoshida, Toshinori, Shibutani, Makoto. 2024. DNA methylation-altered genes in the rat hippocampal neurogenic niche after continuous exposure to amorphous curcumin. In Journal of chemical neuroanatomy, 137, 102414. doi:10.1016/j.jchemneu.2024.102414. https://pubmed.ncbi.nlm.nih.gov/38490283/
7. Gajecka, Marzena, Yu, Wei, Ballif, Blake C, Rice, David P C, Shaffer, Lisa G. . Delineation of mechanisms and regions of dosage imbalance in complex rearrangements of 1p36 leads to a putative gene for regulation of cranial suture closure. In European journal of human genetics : EJHG, 13, 139-49. doi:. https://pubmed.ncbi.nlm.nih.gov/15483646/
8. Schrade, Anja, Kyrönlahti, Antti, Akinrinade, Oyediran, Wilson, David B, Heikinheimo, Markku. 2016. GATA4 Regulates Blood-Testis Barrier Function and Lactate Metabolism in Mouse Sertoli Cells. In Endocrinology, 157, 2416-31. doi:10.1210/en.2015-1927. https://pubmed.ncbi.nlm.nih.gov/26974005/
9. Goto, Taichi, Sapio, Matthew R, Maric, Dragan, Mannes, Andrew J, Iadarola, Michael J. . Longitudinal peripheral tissue RNA-Seq transcriptomic profiling, hyperalgesia, and wound healing in the rat plantar surgical incision model. In FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 35, e21852. doi:10.1096/fj.202100347R. https://pubmed.ncbi.nlm.nih.gov/34499774/