推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Trim30dem1/Cya 基因敲除小鼠
复苏/繁育服务
产品名称:
Trim30d-KO
产品编号:
S-KO-04664
品系背景:
C57BL/6JCya
每周秒杀
* 使用本品系发表的文献需注明:Trim30d-KO mice (Strain S-KO-04664) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Trim30dem1/Cya
品系编号
KOCMP-209387-Trim30d-B6J-VA
产品编号
S-KO-04664
基因名
Trim30d
品系背景
C57BL/6JCya
基因别称
Trim79;TRIM30-3
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
Trim30d位于小鼠的7号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得Trim30d基因敲除小鼠,性成熟后取精子冻存。
Trim30d-KO小鼠模型是由赛业生物(Cyagen)采用基因编辑技术构建的全基因组敲除小鼠。Trim30d基因位于小鼠7号染色体上,包含8个外显子,其中ATG起始密码子位于2号外显子,TAA终止密码子位于8号外显子。赛业生物(Cyagen)选择第三至5号外显子作为目标区域,该区域包含大约350个碱基对的编码序列。通过基因编辑技术,赛业生物(Cyagen)成功构建了Trim30d基因敲除小鼠模型。此外,对出生小鼠进行PCR和测序分析进行基因型鉴定,确保了敲除区域的准确性。Trim30d-KO小鼠模型的构建过程包括将核糖核蛋白(RNP)和靶向载体共同注入受精卵。该模型可用于研究Trim30d基因在小鼠体内的功能和作用机制。
基因研究概述
Trim30d,也称为Trim30α,是Tripartite motif-containing 30家族的一个成员,是一种重要的E3泛素连接酶。Trim30d在细胞凋亡、炎症反应和肿瘤发生中发挥重要作用。Trim30d具有三个结构域:RING结构域、B-box结构域和SPRY结构域。RING结构域负责与E2泛素结合酶结合,催化泛素与底物蛋白的连接;B-box结构域与RING结构域协同作用,增强E3泛素连接酶活性;SPRY结构域参与蛋白质间的相互作用,调控Trim30d的功能。
Trim30d在多种生物学过程中发挥作用,包括细胞凋亡、炎症反应和肿瘤发生。在细胞凋亡中,Trim30d通过泛素化并降解抗凋亡蛋白Bcl-2,促进细胞凋亡[1]。在炎症反应中,Trim30d通过泛素化并降解促炎因子TNFα,抑制炎症反应[2]。在肿瘤发生中,Trim30d的表达与肿瘤的侵袭和转移密切相关。例如,在乳腺癌中,Trim30d的表达与乳腺癌的侵袭和转移密切相关[3]。
此外,Trim30d还参与基因表达调控。例如,Trim30d可以与转录因子结合,影响其活性,进而调控基因的表达[4]。Trim30d还可以通过泛素化修饰影响染色质结构,进而影响基因表达[5]。
综上所述,Trim30d是一种重要的E3泛素连接酶,在细胞凋亡、炎症反应和肿瘤发生中发挥重要作用。Trim30d的研究有助于深入理解泛素化修饰的生物学功能和疾病发生机制,为疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Holland, P. W. H., Marlétaz, F., Maeso, I., Dunwell, T. L., & Paps, J. (2016). New genes from old: asymmetric divergence of gene duplicates and the evolution of development. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 372(1724), 20150475. doi: 10.1098/rstb.2015.0475.
2. Filippini, S. E., & Vega, A. (2013). Breast cancer genes: beyond BRCA1 and BRCA2. Frontiers in bioscience (Landmark edition), 18(5), 1358-1372. doi: 10.2741/4299.
3. Hasty, J., McMillen, D., & Collins, J. J. (2002). Engineered gene circuits. Nature, 420(6912), 224-230. doi: 10.1038/nature01257.
4. Du, L. L. (2020). Resurrection from lethal knockouts: Bypass of gene essentiality. Biochemical and biophysical research communications, 528(2), 405-412. doi: 10.1016/j.bbrc.2020.05.207.
参考文献:
1. Holland, Peter W H, Marlétaz, Ferdinand, Maeso, Ignacio, Dunwell, Thomas L, Paps, Jordi. . New genes from old: asymmetric divergence of gene duplicates and the evolution of development. In Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 372, . doi:. https://pubmed.ncbi.nlm.nih.gov/27994121/
2. Filippini, Sandra E, Vega, Ana. 2013. Breast cancer genes: beyond BRCA1 and BRCA2. In Frontiers in bioscience (Landmark edition), 18, 1358-72. doi:. https://pubmed.ncbi.nlm.nih.gov/23747889/
3. Hasty, Jeff, McMillen, David, Collins, J J. . Engineered gene circuits. In Nature, 420, 224-30. doi:. https://pubmed.ncbi.nlm.nih.gov/12432407/
4. Du, Li-Lin. 2020. Resurrection from lethal knockouts: Bypass of gene essentiality. In Biochemical and biophysical research communications, 528, 405-412. doi:10.1016/j.bbrc.2020.05.207. https://pubmed.ncbi.nlm.nih.gov/32507598/
5. Davidson, Eric, Levin, Michael. 2005. Gene regulatory networks. In Proceedings of the National Academy of Sciences of the United States of America, 102, 4935. doi:. https://pubmed.ncbi.nlm.nih.gov/15809445/