推荐搜索:
C-NKG
IL10
Apoe
VEGFA
Trp53
ob/ob
Rag1
C57BL/6JCya-Siglec1em1/Cya 基因敲除小鼠
复苏/繁育服务
产品名称:
Siglec1-KO
产品编号:
S-KO-04396
品系背景:
C57BL/6JCya
每周秒杀
* 使用本品系发表的文献需注明:Siglec1-KO mice (Strain S-KO-04396) were purchased from Cyagen.
交付类型
周龄
性别
基因型
数量
基本信息
品系名称
C57BL/6JCya-Siglec1em1/Cya
品系编号
KOCMP-20612-Siglec1-B6J-VA
产品编号
S-KO-04396
基因名
Siglec1
品系背景
C57BL/6JCya
基因别称
Sn;Cd169;Siglec-1
NCBI号
修饰方式
全身性基因敲除
品系说明
该品系是基于策略设计时的数据库信息制作而成,建议您在购买前查询最新的数据库和相关文献,以获取最准确的表型信息。
小鼠表型
MGI:99668 Mice homozygous for a disruption in this gene display subtle changes in B- and T-cell populations and decreased IgM levels. Mice homozygous for a knock-out or knock-in allele exhibit impaired phagocytosis of sialylated C. jejuni.
质控标准
精子检测
① 冷冻前验证精子活力观察
② 冷冻验证每批次进行复苏验证
品系状态
活体
环境标准
SPF
供应地区
中国
品系详情
Siglec1位于小鼠的2号染色体,采用基因编辑技术,通过应用高通量电转受精卵方式,获得Siglec1基因敲除小鼠,性成熟后取精子冻存。
Siglec1-KO小鼠模型由赛业生物(Cyagen)构建,使用基因编辑技术进行全身性基因敲除。该模型构建过程中,赛业生物(Cyagen)选择了位于小鼠2号染色体上的Siglec1基因作为目标基因。Siglec1基因包含21个外显子,其中1号外显子包含ATG起始密码子,21号外显子包含TGA终止密码子。目标区域包含了5106个碱基对的编码序列,涵盖了整个Siglec1基因的编码区域。在构建过程中,赛业生物(Cyagen)通过将靶向载体注入受精卵,实现了Siglec1基因的敲除。随后,对出生的小鼠进行PCR和测序分析,以鉴定基因型。携带敲除等位基因的小鼠在B细胞和T细胞群体中表现出细微的变化,并且IgM水平有所下降。此外,携带敲入等位基因的小鼠在吞噬唾液酸化的C. jejuni方面表现出受损的吞噬作用。赛业生物(Cyagen)构建的Siglec1-KO小鼠模型可用于研究Siglec1基因在小鼠体内的功能和相关生物学过程。
基因研究概述
SIGLEC1,也称为Siglec-1或CD169,是一种细胞表面蛋白,属于免疫球蛋白样凝集素(Siglec)家族,该家族成员在免疫系统中发挥着重要作用。SIGLEC1主要在巨噬细胞和单核细胞上表达,其功能涉及细胞间的相互作用、炎症反应和免疫调节。SIGLEC1能够与细胞表面的唾液酸分子结合,这一特性使其在多种生物学过程中发挥着关键作用,包括细胞识别、信号传导和细胞内吞作用。
SIGLEC1在多种疾病的发生发展中发挥着重要作用。例如,研究表明,在肿瘤微环境中,SIGLEC1的表达水平与肿瘤的侵袭性和患者的预后密切相关。肿瘤相关巨噬细胞(TAMs)中SIGLEC1的表达升高,可以促进肿瘤的生长和转移[1]。此外,SIGLEC1在慢性阻塞性肺疾病(COPD)中的作用也得到了研究。研究发现,SIGLEC1在COPD患者的肺组织中表达升高,并且其表达水平与炎症反应的严重程度相关[2]。SIGLEC1还能够影响Ⅰ型干扰素(IFN)信号通路,从而参与多种炎症性疾病的发生发展,如自身免疫性肌炎[3]。
此外,SIGLEC1还与病毒的感染和传播密切相关。例如,猪繁殖与呼吸综合征病毒(PRRSV)的感染需要SIGLEC1介导的细胞内吞作用[4]。同样,SIGLEC1在黑色素瘤的淋巴结转移中也发挥着重要作用,通过为肿瘤细胞提供锚定位点,促进肿瘤的转移[5]。在结核病中,SIGLEC1的遗传多态性也与疾病的易感性相关,可能通过调节IL-1β的表达影响炎症反应[6]。此外,SIGLEC1在非洲猪瘟病毒(ASFV)感染中也发挥着关键作用,与病毒的受体CD163协同作用,共同介导病毒的感染过程[7]。
在新型冠状病毒(SARS-CoV-2)感染中,SIGLEC1的表达水平也与病毒的复制和炎症反应相关。研究发现,SIGLEC1的表达水平与SARS-CoV-2的病毒载量和免疫反应强度呈正相关[8]。通过调节Ⅰ型干扰素信号通路,SIGLEC1可能影响SARS-CoV-2的复制和炎症反应[9]。
综上所述,SIGLEC1在免疫系统和多种疾病的发生发展中发挥着重要作用。其功能涉及细胞间的相互作用、炎症反应和免疫调节,并且与病毒的感染和传播密切相关。深入研究SIGLEC1的生物学功能及其在疾病中的作用机制,有助于为相关疾病的治疗和预防提供新的思路和策略。
参考文献:
1. Cassetta, Luca, Fragkogianni, Stamatina, Sims, Andrew H, Smith, Harriet O, Pollard, Jeffrey W. 2019. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. In Cancer cell, 35, 588-602.e10. doi:10.1016/j.ccell.2019.02.009. https://pubmed.ncbi.nlm.nih.gov/30930117/
2. Li, Sensen, Jiang, Longfeng, Yang, Yanbing, Deng, Xiaozhao, Li, Yaojun. 2020. Siglec1 enhances inflammation through miR-1260-dependent degradation of IκBα in COPD. In Experimental and molecular pathology, 113, 104398. doi:10.1016/j.yexmp.2020.104398. https://pubmed.ncbi.nlm.nih.gov/32007531/
3. Graf, Manuel, von Stuckrad, Sae Lim, Uruha, Akinori, Schneider, Udo, Rose, Thomas. . SIGLEC1 enables straightforward assessment of type I interferon activity in idiopathic inflammatory myopathies. In RMD open, 8, . doi:10.1136/rmdopen-2021-001934. https://pubmed.ncbi.nlm.nih.gov/35177553/
4. Prather, Randall S, Rowland, Raymond R R, Ewen, Catherine, Egen, Tina, Green, Jonathan A. 2013. An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. In Journal of virology, 87, 9538-46. doi:10.1128/JVI.00177-13. https://pubmed.ncbi.nlm.nih.gov/23785195/
5. Singh, Rohit, Choi, Beom K. 2019. Siglec1-expressing subcapsular sinus macrophages provide soil for melanoma lymph node metastasis. In eLife, 8, . doi:10.7554/eLife.48916. https://pubmed.ncbi.nlm.nih.gov/31872800/
6. Chen, Jia, Yang, Xichao, Huang, Yumin, Wu, Zhenbiao, Feng, Yuan. 2024. Knockdown of SIGLEC1 inhibits osteogenic differentiation to alleviate ankylosing spondylitis progression by suppressing the TGF-β1/SMAD signaling pathway. In Naunyn-Schmiedeberg's archives of pharmacology, , . doi:10.1007/s00210-024-03456-2. https://pubmed.ncbi.nlm.nih.gov/39305328/
7. Souza de Lima, Dhemerson, Nunes, Vinicius C L, Ogusku, Mauricio M, Pontillo, Alessandra, Alencar, Bruna de Cunha. 2017. Polymorphisms in SIGLEC1 contribute to susceptibility to pulmonary active tuberculosis possibly through the modulation of IL-1ß. In Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 55, 313-317. doi:10.1016/j.meegid.2017.09.031. https://pubmed.ncbi.nlm.nih.gov/28964857/
8. Gao, Qi, Yang, Yunlong, Luo, Yizhuo, Zheng, Zezhong, Zhang, Guihong. 2022. Adaptation of African swine fever virus to porcine kidney cells stably expressing CD163 and Siglec1. In Frontiers in immunology, 13, 1015224. doi:10.3389/fimmu.2022.1015224. https://pubmed.ncbi.nlm.nih.gov/36389805/
9. Rajagopala, Seesandra V, Strickland, Britton A, Pakala, Suman B, Turner, Justin H, Das, Suman R. 2023. Mucosal Gene Expression in Response to SARS-CoV-2 Is Associated with Viral Load. In Journal of virology, 97, e0147822. doi:10.1128/jvi.01478-22. https://pubmed.ncbi.nlm.nih.gov/36656015/